《附加内容资金时间价值与收益率.ppt》由会员分享,可在线阅读,更多相关《附加内容资金时间价值与收益率.ppt(54页珍藏版)》请在三一办公上搜索。
1、资金时间价值与收益率,附加内容,第一部分资金时间价值,一、资金时间价值定义:资金时间价值是指一定量资金在不同时点上的价值量差额。二、终值和现值的概念 1.终值又称将来值,是现在一定量的资金折算到未来某一时点所对应的价值,俗称“本利和”,通常记作F。即未来价值。2.现值,是指未来某一时点上的一定量资金折算到现在所对应的价值,俗称“本金”,通常记作“P”。即现在价值。例:将100元存入银行,存期1年,利率10%,那么1年到期后能得110元,则这个110元就是现在这100元1年后的本利和,即终值。而100元相对于1年后的110元来说,就属于现在的价值,即现值。,三、利息的两种计算方式:单利计息方式:
2、只对本金计算利息(各期的利息是相同的)复利计息方式:既对本金计算利息,也对前期的利息计算利息(各期利息不同)1.单利终值:FPPinP(1in)式中,1ni单利终值系数【提示】除非特别指明,在计算利息时,给出的利率均为年利率,对于不足一年的利息,以一年等于360天来折算。【例3-2】某人将100元存入银行,年利率为2%,求5年后的终值。【答案】F=P(1in)=100(1+2%5)=110(元)单利终值计算主要解决:已知现值,求终值。,2.单利现值 现值的计算与终值的计算是互逆的,由终值计算现值的过程称为“折现”。单利现值的计算公式为:PF/(1ni)式中,1/(1ni)单利现值系数注:该式用
3、F=P(1in)推导得来。【例3计算分析题】某人希望在第5年末得到本利和1000元,用以支付一笔款项。在利率为5%、单利计息条件下,此人现在需要存入银行多少资金?【答案】P1000/(155%)800(元)【注意】由终值计算现值时所应用的利率,一般也称为“折现率”。【结论】(1)单利的终值和单利的现值互为逆运算;(2)单利终值系数(1in)和单利现值系数1/(1in)互为倒数。,四、复利终值与现值1.复利终值 计算公式推导:F为终值,P为现值,i为利息,n为期数,得复利终值计算公式为:FP*在上式中,称为“复利终值系数”,用符号(F/P,i,n)表示。这样,上式就可以写为:FP*(F/P,i,
4、n),【提示】在平时做题时,复利终值系数可以查教材的附表1得到。考试时,一般会直接给出。但需要注意的是,考试中系数是以符号的形式给出的。因此,对于有关系数的表示符号需要掌握。【例4计算分析题】某人拟购房,开发商提出两个方案:方案一是现在一次性付80万元;方案二是5年后付100万元。若目前银行贷款利率为7%(复利计息),要求计算比较哪个付款方案较为有利。【答案】方案一的终值80(F/P,7%,5)112.208(万元)100(万元)。由于方案二的终值小于方案一的终值,所以应该选择方案二。【注意】在财务管理中,如果不加注明,一般均按照复利计算。,2.复利现值 上式中,(1i)-n称为“复利现值系数
5、”,用符号(P/F,i,n)表示,平时做题时,可查教材附表2得出,考试时一般会直接给出。注:现值公式可以从终值公式 FP*推导得出。【例5计算分析题】某人存入一笔钱,想5年后得到10万,若银行存款利率为5%,要求计算下列指标:(1)如果按照单利计息,现在应存入银行多少资金?(2)如果按照复利计息,现在应存入银行多少资金?【答案】(1)PF/(1ni)10/(155%)8(万元)(2)P10(P/F,5%,5)100.78357.835(万元)【结论】(1)复利终值和复利现值互为逆运算;(2)复利终值系数(F/P,i,n)和复利现值系数(P/F,i,n)互为倒数。【提示】系数间的关系单利终值系数
6、与单利现值系数互为倒数关系复利终值系数与复利现值系数互为倒数关系,五、普通年金1.年金的含义年金,是指一定时期内每次等额收付的系列款项。具有两个特点:一是金额相等;二是时间间隔相等。2.年金的种类,【提示】1.这里的年金收付间隔的时间不一定是1年,可以是半年、一个季度或者一个月等。2.这里年金收付的起止时间可以是从任何时点开始,如一年的间隔期,不一定是从1月1日至12月31日,可以是从当年7月1日至次年6月30日。在年金的四种类型中,最基本的是普通年金,其他类型的年金都可以看成是普通年金的转化形式。,二、普通年金终值与现值的计算1.普通年金终值计算(注意年金终值的涵义、终值点)公式推导过程:F
7、为终值,P为现值,i为利息,n为期数,A为年金,见图表:,其中:为普通年金终值系数,又可以写成(F/A,i,n)附:年金终值系数(复利终值系数1)/i年金终值系数(F/A,i,n),平时做题可查教材的附表3得到,考试时,一般会直接给出该系数。提示:年金终值计算是指已经每年数,即年金,求将来某个时点期,即终值。,【例3-6】A矿业公司决定将其一处矿产开采权公开拍卖,因此它向世界各国煤炭企业招标开矿。已知甲公司和乙公司的投标书最具有竞争力,甲公司的投标书显示,如果该公司取得开采权,从获得开采权的第l年开始,每年末向A公司交纳l0亿美元的开采费,直到l0年后开采结束。乙公司的投标书表示,该公司在取得
8、开采权时,直接付给A公司40亿美元,在8年后开采结束,再付给60亿美元。如A公司要求的年投资回报率达到15%,问应接受哪个公司的投标?,【解答】要回答上述问题,主要是要比较甲乙两个公司给A的开采权收入的大小。但由于两个公司支付开采权费用的时间不同,因此不能直接比较,而应比较这些支出在第10年终值的大小。甲公司的方案对A公司来说是一笔年收款l0亿美元的l0年年金,其终值计算如下:F=10(F/A,15%,10)=1020.304=203.04(亿美元)乙公司的方案对A公司来说是两笔收款,分别计算其终值:第1笔收款(40亿美元)的终值=40(F/P,15%,10)=404.0456=161.824
9、(亿美元)第2笔收款(60亿美元)的终值=60(F/P,15%,2)=601.3225=79.35(亿美元)终值合计l61.824+79.35=241.174(亿美元)因此,甲公司付出的款项终值小于乙公司付出的款项的终值,应接受乙公司的投标。,2.普通年金现值的计算,或者通过终值公式推导得出:现值就是对终值的折现。P=F*(P/F,i,n)=F*=A*=A*其中:为普通年金现值系数,又可写为(P/A,i,n)附:年金现值系数(1复利现值系数)/i年金现值系数(P/A,i,n),平时做题可查教材的附表4得到,考试时,一般会直接给出该系数。提示:年金现值计算是指已知每年数,即年金,求现在的总价值,
10、即现值。同时年金现值为年金终值的折现,而并非它的倒数。,【例3-8】某投资项目于2000年初动工,设当年投产,从投产之日起每年可得收益40000元。按年利率6%计算,计算预期l0年收益的现值。【解答】P40000(P/A,6%,l0)400007.3601294404(元)【例3-9】钱小姐最近准备买房,看了好几家开发商的售房方案,其中一个方案是A开发商出售一套100平方米的住房,要求首期支付10万元,然后分6年每年年末支付3万元。钱小姐很想知道每年付3万元相当于现在多少钱,好让她与现在2 000元/平方米的市场价格进行比较。(贷款利率为6%)【解答】P=3(P/A,6%,6)=34.9173
11、=14.7519(万元)钱小姐付给A开发商的资金现值为:l0+14.7519=24.7519(万元)如果直接按每平方米2000元购买,钱小姐只需要付出20万元,可见分期付款对她不合算。,六、偿债基金和年资本回收额的计算(1)偿债基金的计算偿债基金,是指为了在约定的未来一定时点清偿某笔债务或积聚一定数额的资金而必须分次等额形成的存款准备金,也就是为使年金终值达到既定金额的年金数额。从计算的角度来看,就是在普通年金终值中解出A,这个A就是偿债基金。即,已知年金终值求每年数年金。计算公式如下:,解析,因为年金终值计算公式为F=A*,则A=F*式中,称为“偿债基金系数”,记作(A/F,i,n)。【结论
12、】(1)偿债基金和普通年金终值互为逆运算;(2)偿债基金系数和普通年金终值系数互为倒数。,【例7计算分析题】某企业有一笔4年后到期的借款,到期值为1000万元。若存款年复利率为10%,则为偿还该项借款应建立的偿债基金为多少?【解答】1000A*(F/A,10%,4)A1000/4.6410=215.5(万元),(2)年资本回收额的计算 年资本回收额,是指在约定年限内等额收回初始投入资本或清偿所欠的债务。从计算的角度看,就是在普通年金现值公式中解出A,这个A,就是资本回收额。计算公式如下:,解析,因为年金现值计算公式为P=A*,则A=P*上式中,称为资本回收系数,记作(A/P,i,n)。,【结论
13、】(1)年资本回收额与普通年金现值互为逆运算;(2)资本回收系数与年金现值系数互为倒数。【例8计算分析题】为实施某项计划,需要取得外商贷款1000万美元,经双方协商,贷款利率为8%,按复利计息,贷款分5年于每年年末等额偿还。外商告知,他们已经算好,每年年末应归还本金200万元,支付利息80万美元。要求,核算外商的计算是否正确。【解答】按照约定条件,每年应还本息数额:A=1000/(P/A,8%,5)=250(万元),七、即付年金的终值与现值 即付年金,是指每期期初等额收付的年金,又称为先付年金。有关计算包括两个方面:1、即付年金终值的计算【计算方法】方法一:先将其看成普通年金,套用普通年金终值
14、的计算公式,计算终值,得出来的是在最后一个A位置上的数值,即第n-1期期末的数值,再将其向前调整一期,得出要求的第n期期末的终值,即:FA(F/A,i,n)(1i)即付年金示意图:,即付年金示意图:普通年金示意图:,方法二:分两步进行。第一步现把即付年金转换成普通年金。转换的方法是:假设最后一期期末有一个等额款项的收付,这样,就转换为普通年金的终值问题,按照普通年金终值公式计算终值。不过要注意这样计算的终值,其期数为n1。第二步,进行调整。即把多算的在终值点位置上的这个等额收付的A减掉。当对计算公式进行整理后,即把A提出来后,就得到即付年金的终值计算公式。即付年金的终值系数和普通年金相比,期数
15、加1,而系数减1。即:FA(F/A,i,n1)1,用公式推导:FA(F/A,i,n)(1i)=A*(1+i)=A*=A*=A*=A*1=A*(F/A,i,n+1)1注:就是n+1期的普通年金系数公式,简写为(F/A,i,n+1),【例3-11】为给儿子上大学准备资金,王先生连续6年于每年年初存入银行3000元。若银行存款利率为5%,则王先生在第6年末能一次取出本利和多少钱?【解答】F=A(F/A,i,n+1)-1=3000(F/A,5%,7)-1=3000(8.1420-1)=21426(元),【例3-12】孙女士看到在邻近的城市中,一种品牌的火锅餐馆生意很火爆。她也想在自己所在的县城开一个火
16、锅餐馆,于是找到业内人士进行咨询。花了很多时间,她终于联系到了火锅餐馆的中国总部,总部工作人员告诉她,如果她要加入火锅餐馆的经营队伍,必须一次性支付50万元,并按该火锅品牌的经营模式和经营范围营业。孙女士提出现在没有这么多现金,可否分次支付,得到的答复是如果分次支付,必须从开业当年起,每年年初支付20万元,付3年。三年中如果有一年没有按期付款,则总部将停止专营权的授予。假设孙女士现在身无分文,需要到银行贷款开业,而按照孙女士所在县城有关扶持下岗职工创业投资的计划,她可以获得年利率为5%的贷款扶持。请问孙女士现在应该一次支付还是分次支付?,【解答】对孙女士来说,如果一次支付,则相当于付现值50万
17、元;而若分次支付,则相当于一个3年的即付年金,孙女士可以把这个即付年金折算为3年后的终值,再与50万元的3年终值进行比较,以发现哪个方案更有利。如果分次支付,则其3年终值为:F=20(F/A,5%,3)(1+5%)=203.15251.05=66.2025(万元)或者:F=20(F/A,5%,4)-1=20(4.3101-1)=66.202(万元)如果一次支付,则其3年的终值为:50(F/P,5%,3)=501.1576=57.88(万元)相比之下,一次支付效果更好。,2、即付年金现值的计算【定义方法】即付年金现值,就是各期的年金分别求现值,然后累加起来。【计算方法】方法一:分两步进行。第一步
18、,先把即付年金看成普通年金,套用普通年金现值的计算公式,计算现值。注意这样得出来的是第一个A前一期位置上的数值。第二步,进行调整。即把第一步计算出来的现值乘以(1i)向后调整一期,即得出即付年金的现值。PA(P/A,i,n)*(1i),即付年金现值示意图:普通年金现值系数示意图:,方法二:分两步进行。第一步,先把即付年金转换成普通年金进行计算。转换方法是,假设第1期期初没有等额的收付,这样就转换为普通年金了,可以按照普通年金现值公式计算现值。注意,这样计算出来的现值为n1期的普通年金现值。第二步,进行调整。即把原来未算的第1期期初的A加上。对计算式子进行整理后,即把A提出来后,就得到了即付年金
19、现值。即付年金现值系数与普通年金现值系数相比,期数减1,系数加1。PA(P/A,i,n1)1,用公式推导:PA(P/A,i,n)*(1i)=A*(1i)=A*=A*=A*=A*+=A*+1=A*(P/A,i,n1)1注:为n-1期普通年金现值系数,简写为:(P/A,i,n1),【例3-13】张先生采用分期付款方式购入商品房一套,每年年初付款15000元,分l0年付清。若银行利率为6%,该项分期付款相当于一次现金支付的购买价是多少?【解答】PA(P/A,i,n-1)115000(P/A,6%,9)115000(6.80171)117025.5(元),【例3-l4】李博士是国内某领域的知名专家,某
20、日接到一家上市公司的邀请函,邀请他作为公司的技术顾问,指导开发新产品。邀请函的具体条件如下:(1)每个月来公司指导工作一天;(2)每年聘金l0万元;(3)提供公司所在地A市住房一套,价值80万元;(4)在公司至少工作5年。李博士对以上工作待遇很感兴趣,对公司开发的新产品也很有研究,决定应聘。但他不想接受住房,因为每月工作一天,只需要住公司招待所就可以了,这样住房没有专人照顾,因此他向公司提出,能否将住房改为住房补贴。公司研究了李博士的请求,决定可以在今后5年里每年年初给李博士支付20万元房贴。收到公司的通知后,李博士又犹豫起来,因为如果向公司要住房,可以将其出售,扣除售价5%的契税和手续费,他
21、可以获得76万元,而若接受房贴,则每年年初可获得20万元。假设每年存款利率2%,则李博士应该如何选择?,【解答】要解决上述问题,主要是要比较李博士每年收到20万元的现值与售房76万元的大小问题。由于房贴每年年初发放,因此对李博士来说是一个即付年金。其现值计算如下:P20(P/A,2%,4)1203.80771204.807796.154(万元)从这一点来说,李博士应该接受房贴。如果李博士本身是一个企业的业主,其资金的投资回报率为32%,则他应如何选择呢?【解答】在投资回报率为32%的条件下,每年20万的住房补贴现值为:P20(P/A,32%,4)1202.0957+1203.095761.91
22、4(万元)在这种情况下,应接受住房。【总结】关于即付年金的现值与终值计算,都可以以普通年金的计算为基础进行,也就是在普通年金现值或终值的基础上,再乘以(1+i)。,八、递延年金和永续年金 1、递延年金递延年金,是指第一次等额收付发生在第二期或第二期以后的年金。图示如下:,(1).递延年金终值计算计算递延年金终值和计算普通年金终值基本一样,只是注意扣除递延期即可。FA(F/A,i,n)注:递延年金终值与递延的年数无关。(2).递延年金现值的计算【方法一】把递延期以后的年金套用普通年金公式求现值,这是求出来的现值是第一个等额收付前一期期末的数值,距离递延年金的现值点还有m期,再向前按照复利现值公式
23、折现m期即可。计算公式如下:PA(P/A,i,n)(P/F,i,m),【方法二】把递延期每期期末都当作有等额的收付A,把递延期和以后各期看成是一个普通年金,计算出这个普通年金的现值,再把递延期多算的年金现值减掉即可。PA(P/A,i,mn)(P/A,i,m),【方法三】先求递延年金终值,再折现为现值。P=A(F/A,i,n)(P/F,i,mn)【例9计算分析题】甲公司欲购置一台设备,卖方提出四种付款方案,具体如下:方案1:第一年初付款10万元,从第二年开始,每年末付款28万元,连续支付5次;方案2:第一年初付款5万元,从第二年开始,每年初付款25万元,连续支付6次;方案3:第一年初付款10万元
24、,以后每间隔半年付款一次,每次支付15万元,连续支付8次;方案4:前三年不付款,后六年每年初付款30万元。假设按年计算的折现率为10%,分别计算四个方案的付款现值,最终确定应该选择哪个方案?,【答案】方案1的付款现值 1028(P/A,10%,5)(P/F,10%,1)10283.79080.9091 106.49(万元)方案2的付款现值 525(P/A,10%,6)5254.3553 113.88(万元)方案3的付款现值 1015(P/A,5%,8)10156.4632 106.95(万元)方案4的付款现值 30(P/A,10%,6)(P/F,10%,2)304.35530.8264 107
25、.98(万元)由于方案1的付款现值最小,所以应该选择方案1。,2、永续年金永续年金,是指无限期等额收付的年金。永续年金因为没有终止期,所以只有现值没有终值。永续年金的现值,可以通过普通年金的计算公式导出。在普通年金的现值公式中,令n趋于无穷大,即可得出永续年金现值:P=A/i其推导公式:,九、利率的计算 1、复利计息方式下利率的计算(插值法的运用)一般情况下,计算利率时,首先要计算出有关的时间价值系数,或者复利终值(现值)系数,或者年金终值(现值)系数,然后查表。如果表中有这个系数,则对应的利率即为要求的利率。如果没有,则查处最接近的一大一小两个系数,采用插值法求出。,【例11计算分析题】现在
26、向银行存入20000元,问年利率i为多少时,才能保证在以后9年中每年可以取出4000元。【答案】根据普通年金现值公式:20000=4000(P/A,i,9)(P/A,i,9)=5查表并用内插法求解。查表找出期数为9,年金现值系数最接近5的一大一小两个系数。(P/A,12%,9)5.3282(P/A,14%,9)4.9464方法一:公式:通过解方程得出i。(i为相应的利率,a为相应的系数值),方法二公式:i=i1+*(i2i1)运用:i=12%+*(14%12%)=13.72%,对于永续年金来说,可以直接根据公式来求。【例3-23】若【例3-18】中,吴先生存入l000000元,奖励每年高考的文
27、理科状元各l0000元,奖学金每年发放一次。问银行存款年利率为多少时才可以设定成永久性奖励基金?【解答】由于每年都要拿出20000元,因此奖学金的性质是一项永续年金,其现值应为1000000元,因此:i=20000/1000000=2%也就是说,利率不低于2%才能保证奖学金制度的正常运行。,2、名义利率和实际利率 如果以“年”作为基本计息期,每年计算一次复利,此时的年利率为名义利率(r),如果按照短于1年的计息期计算复利,并将全年利息额除以年初的本金,此时得到的利率为实际利率(i)。假设有资金1000元,准备购买债券。现有两家公司发行债券,情况如下:结论:当m=1时,实际利率=名义利率 当m1
28、时,实际利率名义利率,【例3-24】年利率为12%,按季复利计息,试求实际利率。【解答】i l 11.1255112.55%【例3-25】某企业于年初存入10万元,在年利率10%、每半年复利计息一次的情况下,到第l0年末,该企业能得到的本利和是多少?【解答】根据名义利率与实际利率的换算公式i l,本题中r10%,m2,有:i 110.25%F10 26.53(万元)这种方法先计算以年利率表示的实际利率,然后按复利计息年数计算到期本利和,由于计算出的实际利率百分数往往不是整数,不利于通过查表的方式计算到期本利和。因此可以考虑第二种方法:将r/m作为计息期利率,将mn作为计息期数进行计算。本例用第
29、二种方法计算过程为:FP 10 26.53(万元),【本部分总结】,第二部分、资产收益率,(一)收益的分类与组成 1.必要收益率 必要收益率也称“最低必要报酬率”或“最低要求的收益率”,表示投资者对某资产合理要求的最低收益率。预期收益率投资人要求的必要报酬率,投资可行;预期收益率投资人要求的必要报酬率,投资不可行。2.无风险收益率 无风险收益率也称无风险利率,它是指可以确定可知的无风险资产的收益率,它的大小由纯粹利率(资金的时间价值)和通货膨胀补贴两部分组成。一般情况下,为了方便起见,通常用短期国库券的利率近似的代替无风险收益率。,3.风险收益率 风险收益率是指某资产持有者因承担该资产的风险而
30、要求的超过无风险利率的额外收益,它等于必要收益率与无风险收益率之差。风险收益率衡量了投资者将资金从无风险资产转移到风险资产而要求得到的“额外补偿”,它的大小取决于以下两个因素:一是风险的大小;二是投资者对风险的偏好。注:收益率有时候可以用利率代替使用。,必要收益率=无风险收益率+风险收益率风险收益率=必要收益率-无风险收益率,(二)、资本资产定价模型的基本原理高风险、高收益。1、系数 定义:是指可以反映单项资产收益率与市场平均收益率之间变动关系的一个量化指标,它表示单项资产收益率的变动受市场平均收益率变动的影响程度,换句话说,就是相对于市场风险而言,单项资产系统风险的大小,即单项资产风险是市场
31、风险的倍数。附注:当1时,说明该资产的收益率与市场平均收益率呈同方向、同比例的变化,即如果市场平均收益率增加(或减少)1%,那么该资产的收益率也相应地增加(或减少)1%,也就是说,该资产所含的系统风险与市场的风险一致;当1时,说明该资产收益率的变动幅度小于市场组合收益率(或称市场平均收益率)的变动幅度,因此其所含的系统风险小于市场组合的风险;当1时,说明该资产收益率的变动幅度大于市场组合收益率的变动幅度,因此其所含的系统风险大于市场组合的风险。,2、资本资产定价模型 某项资产的必要收益率无风险收益率风险收益率无风险收益率(市场平均收益率无风险收益率)例:某年由MULTEX公布的美国通用汽车公司
32、的是1.170,短期国库券利率为4%,市场平均股票收益率为10%,通用汽车该年股票的必要收益率为多少?答案:通用汽车股票的必要收益率=4%+1.170*(10%-4%)=11.02%解析:(1)市场也是经济的一个环节,其收益率也必须遵循公式:必要收益率=无风险收益率+风险收益率,风险收益率=必要收益率-无风险收益率,则得出市场风险收益率为10%-4%=6%;(2)系数是反映系统风险的指标,也是指本公司的风险为市场风险的多少倍;通用公司=1.17,则其风险为市场的1.17倍,相对应的其风险收益也应是市场风险收益的1.17倍,即=1.17*(10%-4%);(3)通过公式:必要收益率=无风险收益率+风险收益率,得出通用汽车公司的必要收益率=4%+1.170*(10%-4%)=11.02%,资产组合的必要收益率无风险收益率资产组合的(市场组合的平均收益率无风险收益率)用公式表示如下:R=Rf+(Rm-Rf)其中,R表示某资产的必要收益率;表示该资产的系统风险系数;Rf表示无风险收益率(通常以短期国债的利率来近似替代);Rm表示市场组合平均收益率(通常用股票价格指数的平均收益率来代替),(RmRf)称为市场风险溢酬。某资产的风险收益率是市场风险溢酬与该资产系数的乘积。即:风险收益率(RmRf),