电路的暂态分析-钱晓菲.ppt

上传人:牧羊曲112 文档编号:6391991 上传时间:2023-10-26 格式:PPT 页数:73 大小:1.71MB
返回 下载 相关 举报
电路的暂态分析-钱晓菲.ppt_第1页
第1页 / 共73页
电路的暂态分析-钱晓菲.ppt_第2页
第2页 / 共73页
电路的暂态分析-钱晓菲.ppt_第3页
第3页 / 共73页
电路的暂态分析-钱晓菲.ppt_第4页
第4页 / 共73页
电路的暂态分析-钱晓菲.ppt_第5页
第5页 / 共73页
点击查看更多>>
资源描述

《电路的暂态分析-钱晓菲.ppt》由会员分享,可在线阅读,更多相关《电路的暂态分析-钱晓菲.ppt(73页珍藏版)》请在三一办公上搜索。

1、3.2 储能元件和换路定则,3.3 RC电路的响应,3.4 一阶线性电路暂态分析的三要素法,3.6 RL电路的响应,3.5 微分电路和积分电路,3.1 电阻元件、电感元件、电容元件,第3章 电路的暂态分析,1.了解电阻元件、电感元件与电容元件的特征;2.理解电路的暂态和稳态、零输入响应、零状态响 应、全响应的概念,以及时间常数的物理意义;3.掌握换路定则及初始值的求法;4.掌握一阶线性电路分析的三要素法。,本章要求:,稳定状态:在指定条件下电路中电压、电流已达到稳定值。,暂态过程:电路从一种稳态变化到另一种稳态的过渡过程。,1.利用电路暂态过程产生特定波形的电信号 如锯齿波、三角波、尖脉冲等,

2、应用于电子电路。,研究暂态过程的实际意义,2.控制、预防可能产生的危害 暂态过程开始的瞬间可能产生过电压、过电流使电气设备或元件损坏。,3.1.1 电阻元件,描述消耗电能的性质,根据欧姆定律:,即电阻元件上的电压与通过的电流成线性关系,线性电阻,金属导体的电阻与导体的尺寸及导体材料的导电 性能有关,表达式为:,表明电能全部消耗在电阻上,转换为热能散发。,电阻的能量,3.1 电阻元件、电感元件与电容元件,描述线圈通有电流时产生磁场、储存磁场能量的性质。,1.物理意义,3.1.2 电感元件,2.自感电势:,非线性电感:L不为常数,3.电感元件储能,根据基尔霍夫定律可得:,将上式两边同乘上 i,并积

3、分,则得:,即电感将电能转换为磁场能储存在线圈中,当电流增大时,磁场能增大,电感元件从电源取用电能;当电流减小时,磁场能减小,电感元件向电源放还能量。,磁场能,3.1.3 电容元件,描述电容两端加电源后,其两个极板上分别聚集起等量异号的电荷,在介质中建立起电场,并储存电场能量的性质。,电容:,当电压u变化时,在电路中产生电流:,电容元件储能,将上式两边同乘上 u,并积分,则得:,即电容将电能转换为电场能储存在电容中,当电压增大时,电场能增大,电容元件从电源取用电能;当电压减小时,电场能减小,电容元件向电源放还能量。,电场能,电容元件储能,本节所讲的均为线性元件,即R、L、C 都是常数。,3.2

4、 储能元件和换路定则,1.电路中产生暂态过程的原因,电流 i 随电压 u 比例变化。,合S后:,所以电阻电路不存在暂态过程(R耗能元件)。,图(a):合S前:,例:,i,图(b),所以电容电路存在暂态过程(C储能元件),合S前:,暂态,稳态,产生暂态过程的必要条件:,L 储能:,换路:电路状态的改变。如:,电路接通、切断、短路、电压改变或参数改变,C 储能:,产生暂态过程的原因:由于物体所具有的能量不能跃变而造成,在换路瞬间储能元件的能量也不能跃变,(1)电路中含有储能元件(内因)(2)电路发生换路(外因),电容电路:,注:换路定则仅用于换路瞬间来确定暂态 过程中uC、iL初始值。,2.换路定

5、则,电感电路:,3.初始值的确定,求解要点:,(2)其它电量初始值的求法。,初始值:电路中各 u、i 在 t=0+时的数值。,(1)uC(0+)、iL(0+)的求法。,1)先由t=0-的电路求出 uC(0)、iL(0);,2)根据换路定律求出 uC(0+)、iL(0+)。,1)由t=0+的电路求其它电量的初始值;,2)在 t=0+时的电压方程中 uC=uC(0+)、t=0+时的电流方程中 iL=iL(0+)。,暂态过程初始值的确定,例1,由已知条件知,根据换路定则得:,已知:换路前电路处稳态,C、L 均未储能。试求:电路中各电压和电流 的初始值。,iC、uL 产生突变,(2)由t=0+电路,求

6、其余各电流、电压的初始值,换路前电路已处于稳态:电容元件视为开路;电感元件视为短路。,由t=0-电路可求得:,解:,由换路定则:,解:(2)由t=0+电路求 iC(0+)、uL(0+),由图可列出,带入数据,iL(0+),uc(0+),R,解:解之得,并可求出,计算结果:,电量,结论,1.换路瞬间,uC、iL 不能跃变,但其它电量均可以 跃变。,3.换路前,若uC(0-)0,换路瞬间(t=0+等效电路中),电容元件可用一理想电压源替代,其电压为uc(0+);换路前,若iL(0-)0,换路瞬间(t=0+等效电 路中),电感元件可用一理想电流源替代,其电 流为iL(0+)。,2.换路前,若储能元件

7、没有储能,换路瞬间(t=0+的 等效电路中),可视电容元件短路,电感元件开路。,3.3 RC电路的响应,一阶电路暂态过程的求解方法,1.经典法:根据激励(电源电压或电流),通过求解电路的微分方程得出电路的响应(电压和电流)。,2.三要素法,仅含一个储能元件或可等效为一个储能元件的线性电路,且由一阶微分方程描述,称为一阶线性电路。,一阶电路,求解方法:,代入上式得,(1)列 KVL方程,1.电容电压 uC 的变化规律(t 0),零输入响应:无电源激励,输入信号为零,仅由电容 元件的初始储能所产生的 电路的响应。,实质:RC电路的放电过程,3.3.1 RC电路的零输入响应,(2)解方程:,特征方程

8、,由初始值确定积分常数 A,齐次微分方程的通解:,电容电压 uC 从初始值按指数规律衰减,衰 减的快慢由RC 决定。,(3)电容电压 uC 的变化规律,电阻电压:,放电电流:,电容电压:,2.电流及电阻电压的变化规律,3.、变化曲线,4.时间常数,(2)物理意义,令:,单位:s,(1)量纲,当 时,时间常数 决定电路暂态过程变化的快慢,越大,曲线变化越慢,达到稳态所需要 的时间越长。,时间常数 的物理意义,U,当 t=5 时,过渡过程基本结束,uC达到稳态值。,(3)暂态时间,理论上认为、电路达稳态,工程上认为、电容放电基本结束。,随时间而衰减,3.3.2 RC电路的零状态响应,零状态响应:储

9、能元件的初始能量为零,仅由电源激励所产生的电路的响应。,实质:RC电路的充电过程,分析:在t=0时,合上开关S,此时,电路实为输入一 阶跃电压u,如图。与恒 定电压不同,其,电压u表达式,uC,一阶线性常系数非齐次微分方程,方程的通解=方程的特解+对应齐次方程的通解,1.uC的变化规律,(1)列 KVL方程,3.3.2 RC电路的零状态响应,(2)解方程,求特解:,方程的通解:,求对应齐次微分方程的通解,微分方程的通解为,确定积分常数A,根据换路定则在 t=0+时,,(3)电容电压 uC 的变化规律,暂态分量,稳态分量,电路达到稳定状态时的电压,仅存在于暂态过程中,3.、变化曲线,当 t=时,

10、表示电容电压 uC 从初始值上升到 稳态值的 63.2%时所需的时间。,2.电流 IC 的变化规律,4.时间常数 的物理意义,为什么在 t=0时电流最大?,当t=5时,暂态基本结束,uC 达到稳态值。,3.3.3 RC电路的全响应,1.uC 的变化规律,全响应:电源激励、储能元件的初始能量均不为零时,电路中的响应。,根据叠加定理 全响应=零输入响应+零状态响应,uC,稳态分量,零输入响应,零状态响应,暂态分量,结论2:全响应=稳态分量+暂态分量,全响应,结论1:全响应=零输入响应+零状态响应,稳态值,初始值,稳态解,初始值,3.4 一阶线性电路暂态分析的三要素法,仅含一个储能元件或可等效为 一

11、个储能元件的线性电路,且由 一阶微分方程描述,称为一阶 线性电路。,据经典法推导结果,全响应,uC,:代表一阶电路中任一电压、电流函数,式中,在直流电源激励的情况下,一阶线性电路微分方程解的通用表达式:,利用求三要素的方法求解暂态过程,称为三要素法.一阶电路都可以应用三要素法求解,在求得、和 的基础上,可直接写出电路的响应(电压或电流)。,电路响应的变化曲线,三要素法求解暂态过程的要点,(1)求初始值、稳态值、时间常数;,(3)画出暂态电路电压、电流随时间变化的曲线。,(2)将求得的三要素结果代入暂态过程通用表达式;,求换路后电路中的电压和电流,其中电容 C 视开 路,电感L视为短路,即求解直

12、流电阻性电路中的电 压和电流。,(1)稳态值 的计算,响应中“三要素”的确定,例:,1)由t=0-电路求,在换路瞬间 t=(0+)的等效电路中,(2)若,电感元件用恒流源代替,其值 等于I0,电感元件视为开路。,注意:,(2)初始值 的计算,1)对于简单的一阶电路,R0=R;,2)对于较复杂的一阶电路,R0为换路后的电路 除去电源和储能元件后,在储能元件两端所 求得的无源二端网络的等效电阻。,(3)时间常数 的计算,对于一阶RC电路,对于一阶RL电路,注意:,R0的计算类似于应用戴维宁定理解题时计算电路等效电阻的方法。即从储能元件两端看进去的等效电阻,如图所示。,例1:,电路如图,t=0时合上

13、开关S,合S前电路已处于稳态。试求电容电压 和电流、。,(1)确定初始值,由t=0-电路可求得,由换路定则,应用举例,(2)确定稳态值,由换路后电路求稳态值,(3)由换路后电路求 时间常数,uC 的变化曲线如图,用三要素法求,例2:,由t=0-时电路,电路如图,开关S闭合前电路已处于稳态。t=0时S闭合,试求:t 0时电容电压 uC 和电流iC、i1和i2。,求初始值,求时间常数,由右图电路可求得,求稳态值,2,3,+,-,+-,S,t=0,6V,1,2,3,+,-,(、关联),3.5 微分电路和积分电路,3.5.1 微分电路,微分电路与积分电路是矩形脉冲激励下的RC电路。若选取不同的时间常数

14、,可构成输出电压波形与输入电压波形之间的特定(微分或积分)的关系。,1.电路,条件,(2)输出电压从电阻R端取出,2.分析,由KVL定律,3.波形,不同时的u2波形,应用:用于波形变换,作为触发信号。,=0.05tp,=10tp,=0.2tp,3.5.2 积分电路,条件,(2)从电容器两端输出。,由图:,1.电路,输出电压与输入电压近似成积分关系。,2.分析,3.波形,t2,U,t1,u1,3.6 RL电路的响应,3.6.1 RL 电路的零输入响应,1.RL 短接,(1)的变化规律,(三要素公式),1)确定初始值,2)确定稳态值,3)确定电路的时间常数,(2)变化曲线,2.RL直接从直流电源断

15、开,(1)可能产生的现象,1)刀闸处产生电弧,2)电压表瞬间过电压,(2)解决措施,2)接续流二极管 VD,1)接放电电阻,图示电路中,RL是发电机的励磁绕组,其电感较大。Rf是调节励磁电流用的。当将电源开关断开时,为了不 至由于励磁线圈所储的磁能消失过快而烧坏开关触头,往往用一个泄放电阻R 与线圈联接。开关接通R同时 将电源断开。经过一段时间后,再将开关扳到 3的位 置,此时电路完全断开。,例:,(1)R=1000,试求开 关S由1合向2瞬间线圈 两端的电压uRL。,电路稳态时S由1合向2。,(2)在(1)中,若使U不 超过220V,则泄放电阻 R应选多大?,解:,(3)根据(2)中所选用的

16、电阻R,试求开关接通R后经 过多长时间,线圈才能将所储的磁能放出95%?(4)写出(3)中uRL随时间变化的表示式。,换路前,线圈中的电流为,(1)开关接通R瞬间线圈两端的电压为,(2)如果不使uRL(0)超过220V,则,即,(3)求当磁能已放出95%时的电流,求所经过的时间,3.6.2 RL电路的零状态响应,1.变化规律,三要素法,2.、变化曲线,3.6.3 RL电路的全响应,L,S,U,用三要素法求,2.变化规律,变化曲线,变化曲线,用三要素法求解,解:,已知:S 在t=0时闭合,换路前电路处于稳态。求:电感电流,例:,由t=0等效电路可求得,(1)求uL(0+),iL(0+),由t=0+等效电路可求得,(2)求稳态值,由t=等效电路可求得,(3)求时间常数,稳态值,iL,uL变化曲线,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号