《大学材料科学经典课件第二章材料的晶体结构.ppt》由会员分享,可在线阅读,更多相关《大学材料科学经典课件第二章材料的晶体结构.ppt(102页珍藏版)》请在三一办公上搜索。
1、第二章 材料的晶体结构,本章的主要内容 晶体学基础 纯金属的晶体结构 离子晶体的晶体结构 共价晶体的晶体结构,第一节 晶体学基础,一、晶体结构、空间点阵和晶胞晶体结构:晶体中原子(分子、离子)在三维空间的具体排列方式。,空间点阵:由几何点做周期性的规则排列所形成的三维阵列。空间点阵中的点阵点。它是纯粹的几何点,各点周围环境相同。晶格:描述晶体中原子排列规律的空间格架称之为晶格。,晶胞:空间点阵中能代表原子排列规律的最小的几何单元称之为晶胞,是构成空间点阵的最基本单元。能表达晶体结构的最小重复单位。换言之:晶胞在三维空间有规则地重复排列组成了晶体。,选取原则:能够充分反映空间点阵的对称性;相等的
2、棱和角的数目最多;具有尽可能多的直角;体积最小。晶格常数点阵常数 三个棱边的长度a,b,c及其夹角,表示。,二、.晶系与布拉菲点阵,1855年,法国学者布拉维(Bravais)用数学方法证明了空间点阵共有且只 能有十四种,并归纳为七个晶系:,1).三斜晶系 a=b=c,=90;2).单斜晶系 a=b=c,=90=;3).正交晶系 a=b=c,=90;4).六方晶系 a=b=c,=90,=120;5).菱方晶系 a=b=c,=90;6).正方晶系 a=b=c,=90;7).立方晶系 a=b=c,=90;,布拉菲空间点阵晶胞,三斜:简单三斜,单斜:简单单斜 底心单斜,正交:简单正交 底心正交体心正
3、交面心正交,菱方:简单菱方,六方:简单六方,四方:简单四方 体心四方,立方:简单立方 体心立方 面心立方,如:底心正方点阵的表示,晶体结构和空间点阵的区别,空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各阵点的周围环境相同,它只能有14中类型,晶体结构则是晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。,晶体结构和空间点阵的区别,晶体结和空间点阵的区别,三、晶面指数和晶相指数.晶面(crystal face):在晶格中由一系列原子所构成的平面称为晶面。,晶面指数:表示晶面方位的符号。标定方法:建立
4、坐标系 结点为原点,三棱为方向,点阵常数为单位(原点在标定面以外,可以采用平移法);晶面在三个坐标上的截距a1 a2 a3;计算其倒数 b1 b2 b3;化成最小、整数比h:k:l;放在圆方括号(hkl),不加逗号,负号记在上方。,建立坐标系 结点为原点,三棱为方向,点阵常数为单位(原点在标定面以外,可以采用平移法);晶面在三个坐标上的截距a1 a2 a3;计算其倒数 b1 b2 b3;化成最小、整数比h:k:l;放在圆方括号(hkl),不加逗号,负号记在上方。,晶面指数:表示晶面方位的符号。,晶面指数特征:与原点位置无关;每一指数对应一组平行的晶面。平行晶面的晶面指数相同,或数字相同,符号相
5、反。,晶面族:原子排列情况相同,但空间位向不同的一组晶面的集合。表示方法:用花括号hkl表示。例如:可见任意交换指数的位置和改变符号后的所有结果都是该族的范围。,晶面指数的例子,正交点阵中一些晶面的面指数,晶向(crystal direction):在晶格中,任意两原子之间的连线所指的方向。代表了晶体中原子列的方向。,晶向指数:表示晶向方位符号。标定方法:建立坐标系 结点为原点,三棱为方向,点阵常数为单位;在晶向上任两点的坐标(x1,y1,z1)(x2,y2,z2)。(若平移晶向或坐标,让第一点在原点则下一步更简单);计算x2-x1:y2-y1:z2-z1;化成最小、整数比u:v:w;放在方括
6、号uvw中,不加逗号,负号记在上方。,晶向指数的例子,正交晶系一些重要晶向的晶向指数,一、晶向与立方晶系晶向指数,晶向族:原子排列情况相同,但空间位向不同的一组晶向的集合。,表示方法:用尖括号表示。,举例:,可见任意交换指数的位置和改变符号后的所有结果都是该族的范围。,晶向指数特征:与原点位置无关;每一指数对应一组平行方向一致的晶向。若晶体中两晶向相互平行但方向相反,则晶向指数中数字相同而符号相反。,在立方晶系中,具有相同指数的晶向和晶面相互垂直。,试说明一个面心立方等于一个体心四方结构。在立方系中绘出110、111晶面族所包括的晶面,及(112)和(1 0)晶面。,三、六方晶系晶面与晶向指数
7、,晶系晶向与晶面指数,1、晶面指数:,建立坐标系:在六方晶系中,为了明确的表示晶体底面的(六次)对称性,底面用互成120度的三个坐标轴x1、x2、x3,其单位为晶格常数a,加上垂直于底面的方向Z,其单位为高度方向的晶格常数c。注意x1、x2、x3三个坐标值不是独立的变量。方法同立方晶系,(hkil)为在四个坐标轴的截距倒数的化简,自然可保证关系式hkI0。底面指数为(0001),侧面的指数为(1010)。,三、六方晶系晶面与晶向指数,晶系晶向与晶面指数,2、晶向指数,标定方法:,平移晶向(或坐标),让原点为晶向上一点,取另一点的坐标,有:,并满足pqr0;,化成最小、整数比 u:v:t:w放在
8、方方括号uvtw,不加逗号,负号记在上方。,六方晶系中,三轴指数和四轴指数的相互转化,三轴晶向指数(U V W),四轴晶向指数(u v t w),三轴晶面指数(h k l),四轴晶面指数(h k i l),i(h+k)。,三、六方晶系晶面与晶向指数,晶系晶向与晶面指数,3、晶向族与晶面族,同一族的晶向或晶面也具有等同的效果;,三个水平方向具有等同的效果,指数的交换只能在他们之间进行,Z轴只能改变符号;,改变符号时,前三项要满足pqr0的相关性要求。,三、其他晶体学概念,2.晶面的原子密度(面密度):该晶面单位面积上的节点(原子)数。,1.晶向的原子密度(线密度):该晶向单位长度上的节点(原子)
9、数。,晶带定律的应用(1),晶面1(h1 k1 l1),晶面2(h2 k2 l2),晶带轴(u v w),晶带定律的应用(2),晶向1(u1 v1 w1),晶向2(u2 v2 w2),晶面(h k l),晶带定律的应用(3),晶轴1(u1 v1 w1),晶轴2(u2 v2 w2),晶轴3(u3 v3 w3),若,则,三个晶轴同在一个晶面上,晶带定律的应用(4),晶面1(h1 k1 l1),晶面2(h2 k2 l2),晶面3(h3 k3 l3),若,则,三个晶面同属一个晶带,三、其他晶体学概念,4.晶面间距:指相邻两个平行晶面之间的距离晶面间的距离越大,晶面上的原子排列越密集。同一晶面族的原子排
10、列方式相同,它们的晶面间的间距也相同。,晶面间距(3),正交晶系,立方晶系,六方晶系,不同晶面族的晶面间距也不相同。在简单立方晶胞中复杂立方晶胞其中fcc和bcc晶体中m一般为2,但要具体分析。,晶面间距(4),复杂晶胞,体心立方,面心立方,密排六方,h+k+l=奇数,h k l不全为奇数或者不全为偶数,h+2k=3n(n=1,2,3.),l为奇数,附加面,Dhkl/2,三、其他晶体学概念,5.两晶向之间的夹角:,在立方晶系中按矢量关系,晶向u1v1w1与u2v2w2之间的夹角满足关系:,在立方晶系,晶面之间的夹角也就是为其法线的夹角,用对应的晶向同样可以求出。,非立方晶系,晶面或晶向之间的夹
11、角可以计算,但要复杂许多。,第二节 纯金属常见的晶体结构,结构特点:以金属键结合,失去外层电子的金属离子与自由电子的吸引力。无方向性,对称性较高的密堆结构。常见结构:,体心立方 bcc Body-centered cubic面心立方 fcc Face-centered cubic密堆六方 cph Close-packed hexagonal,一、体心立方,第二节 纯金属常见的晶体结构,原子位置 立方体的八个顶角和体心,常见金属:钒、铌、钽、钼、钡、钛、铁、铁、钨,体心立方中原子排列,第二节 纯金属常见的晶体结构,在体心立方晶格中密排面为110,密排方向为,体心立方中的间隙,第二节 纯金属常见的
12、晶体结构,二、面心立方,第二节 纯金属常见的晶体结构,原子位置 立方体的八个顶角和每个侧面中心,常见金属:铜、银、金、铝、镍、铅、铹、铁、钴、锰。,面心立方中原子排列,第二节 纯金属常见的晶体结构,在面心立方晶格中密排面为111,密排方向为,面心立方中的间隙,第二节 纯金属常见的晶体结构,将原子假定为刚性球,他们在堆垛排列时必然存在间隙。在面心立方晶格中存在的间隙主要有两种形式:,三、密堆六方,第二节 纯金属常见的晶体结构,原子位置 12个顶角、上下底心和体内3处,常见金属:镁、锌、镉、钛、铍、钴、锆,密堆六方中的间隙,第二节 纯金属常见的晶体结构,八面体间隙:,位置 体内 单胞数量 6大小,
13、1、总结三种常见金属晶体结构的特征 2、知道某金属的晶体结构、密度、原子量求原子半径。,四、面心立方和密堆六方的原子堆垛,第二节 纯金属常见的晶体结构,原子的密排面的形式:在平面上每个原子与六个原子相切。,hcp中为(0001)面,按 ABABABABAB-方式堆垛,Fcc中为111面,按 ABCABCABCABC-方式堆垛,在一个层中,最紧密的堆积方式,是一个球与周围 6 个球相切,在中心的周围形成 6 个凹位,将其算为第一层。,第二层 对第一层来讲最紧密的堆积方式是将球对准 1,3,5 位。(或对准 2,4,6 位,其情形是一样的),关键是第三层,对第一、二层来说,第三层可以有两种最紧密的
14、堆积方式。,下图是此种六方紧密堆积的前视图,A,第一种是将球对准第一层的球。,于是每两层形成一个周期,即 AB AB 堆积方式,形成六方紧密堆积。,配位数 12。(同层 6,上下层各 3),此种立方紧密堆积的前视图,A,第四层再排 A,于是形成 ABC ABC 三层一个周期。得到面心立方堆积。,配位数 12。(同层 6,上下层各 3),ABC ABC 形式的堆积,为什么是面心立方堆积?我们来加以说明。,这两种堆积都是最紧密堆积,空间利用率为 74.05%。,五、其他晶体结构,第二节 纯金属常见的晶体结构,将两个原子为一组,满足面心立方关系。,五、其他晶体结构,第二节 纯金属常见的晶体结构,侧面
15、原子不在中心,面心正方,三斜,六、其他概念,第二节 纯金属常见的晶体结构,同素异晶转变 大部分金属只有一种晶体结构,但也有少数金属如Fe、Mn、Ti、Co等具有两种或几种晶体结构,即具有多晶型。当外部条件(如温度和压力)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异晶转变。铁的同素异晶转变在热处理中有非常重大的意义,六、其他概念,第二节 纯金属常见的晶体结构,原子半径 当大量原子通过键合组成紧密排列的晶体时,利用原子等径刚球密堆模型,以相切两刚球的中心距(原子间距)之半作为原子半径。原子半径的测量方法是利用X射线来先确定其晶体结构的类型和一些晶面的间距,然后根据晶体
16、结构中原子排列的关系计算出。,原子的半径并不是固定不变的,它随着结合键的类型和外界环境不同而不同。一般表现规律为:1温度升高,原子半径增大;2压力增大,原子半径减小;3原子间结合键愈强,如离子键或金属键,原子间距相应较小,即原子的半径也较小;4晶体中,原子的配位数的降低,原子的半径也随之减小,在同素异晶转变中,这种改变可减小转变中的体积变化,铁的面心立方与体心立方晶格之间的变化就是一例。,第三节 离子晶体的结构,一、离子晶体的主要特点硬度高、强度大、熔点和沸点较高、热膨胀系数小,脆性大、良好的绝缘体、无色透明。,二 离子半径,离子半径 指从原子核中心到其最外层电子的平均距离指“离子晶体中正负离
17、子核间的距离就是正负离子半径之和。”用 d 表示离子半径:根据晶体中相邻正负离子间的核间距(d)测出的。d=r+r-(有效离子半径),(1)格尔德施密特离子半径鲍林从有效核电荷和屏蔽常数推算(2)鲍林方法:他认为离子的大小,取决于最外层电子的分布,正负离子有相同离子结构时,离子半径与作用于最外 e 层上的 Z*成反比 R=Cn/(Z-)鲍林计算公式:R1=Cn/(Z-)Rw=R1(W)-2/(n-1),离子半径:离子半径变化规律:具有同一电子结构的正负离子中,负离子半径一般比正离子半径大。rNa+=98pm,rF-=133pm 同一元素不同价态的正离子,电荷数越少的离子半径越大。rFe2+rF
18、e3+同一主族,从上到下,电荷数相同的离子半径依次增大。,同一周期主族元素正离子半径随离子电荷数增大而依次减小。rNa+rMg2+rAl3+周期表中,每个元素与其邻近的右下角或左上角元素离子半径接近。即对角线规则。rLi+rMg2+;rSc3+rZr4+;rNa+rCa2+,2、配位数,在离子晶体中,与某一考察离子邻接的异号粒子数目。,例如:若三个负离子堆积成一个正三角形,在空隙中嵌入一个正离子,恰好与三个负离子相切时,正、负离子的半径比最小值为:,配位数:配位数决定于正负离子半径之比.,离子的堆积,负离子堆积成骨架,正离子居于空隙中,形成负离子配位多面体。负离子配位多面体在离子晶体结构中,与
19、某面体一个正离子成配位关系而邻接的各个负离子中心线所构成的,离子晶体的结构规则,1.负离子配位多面体规则在离子晶体中,正离子的周围形成一个负离子配位多面体;正负离子间的平衡距离取决于离子半径之和;而正离子的配位数则取决于正负离子的半径比。这是鲍林第一规则。,、NaCl型 正负离子配位数为6,正八面体结构。r+/r-0.4140.732,、CsCl型 正负离子配位数为8,正立方体结构。r+/r-0.7321.00,、ZnS型 正负离子配位数为4,正四面体结构。r+/r-0.2250.414,、CaF2型 正离子配位数为8,负离子配位数为4。,、TiO2型 正离子配位数为6,负离子配位数为3。,离
20、子晶体的结构规则,将离子晶体结构视为由负离子配位多面体按一定方式连接而成,正离子则处于负离子多面体的中央,故配位多面体才是离子晶体的真正结构基元。离子晶体中,正离子的配位数通常为4和6,但也有少数为3,8,12。,离子晶体的结构规则,2.电价规则在一个稳定的离子晶体结构中,每个负离子的电价Z-等于或接近等于与之相邻接的各正离子静电强度S的总和。这就是鲍林第二规则,也称电价规则 S=Z+/n Z-=Si=(Z+/n)决定了一个负离子被几个多面体共有,离子晶体的结构规则,3.负离子多面体共用顶、棱和面的规则鲍林第三规则指出:“在一配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。对于电
21、价高,配位数低的正离子来说,这个效应尤为显著。,离子晶体的结构规则,4.不同种类正离子配位多面体间连接规则鲍林第四规则认为:“在含有一种以上正负离子的离子晶体中,一些电价较高,配位数较低的正离子配位多面体之间,有尽量互不结合的趋势。”,离子晶体的结构规则,5.节约规则鲍林第五规则指出:“在同一晶体中,同种正离子与同种负离子的结合方式应最大限度地趋于一致。”因为在一个均匀的结构中,不同形状的配位多面体很难有效堆积在一起。,典型的离子晶体结构,1.AB型化合物结构a.CsCl型结构:CsCl型结构是离子晶体结构中最简单的一种,属立方晶系简单立方点阵,Pm3m空间群。CS+和Cl-半径之比为0.16
22、9nm/0.181nm0.933,Cl-离子构成正六面体,Cs+在其中心,Cs+和Cl-的配位数均为8,多面体共面连接,一个晶胞内含Cs+和Cl-各一个,b.NaCl型结构:自然界有几百种化合物都属于NaCl型结构,有氧化物MgO,CaO,SrO,BaO,CdO,MnO,FeO,CoO,NiO;氮化物里TiN,LaN,ScN,CrN,ZrN;碳化物TiC,VC,ScC等;所有的碱金属硫化物和卤化物(CsCl,CsBr,Csl除外)也都具有这种结构。,c.立方ZnS型结构:立方ZnS结构类型又称闪锌矿型(-ZnS),属于立方晶系,面心立方点阵,F43m空间群,如图2.34所示。,d.六方ZnS型
23、结构:六方 ZnS型又叫纤锌矿型,属六方晶系,P63mc空间群。,2.AB2型化合物结构a.CaF2(萤石)型结构:CaF2属立方晶系,面心立方点阵,Fm3m空间群,其结构如图所示,正负离子数比为1:2。,b.TiO2型结构:金红石是TiO2的一种稳定型结构,属四方晶系,p*4/m*n*m空间群,其结构如图所示。,3.A2B3型化合物结构:刚玉为天然a-Al2O3单晶体,呈红色的称红宝石(含铬),呈蓝色的称蓝宝石(含钛)。其结构属三方晶石,R3C空间群。刚玉性质极硬,莫氏硬度9,不易破碎,熔点2050度,这与结构中AlO键的结合强度密切相关。属于刚玉型结构的化合物还有Cr2O3,aFe2O3,
24、aGa2O3等。以-Al2O3为代表的刚玉型结构,是 A2B3型的典型结构。,第四节 共价晶体的结构,元素周期表中,族元素、许多无机非金属材料和聚合物都是共价键结合。共价晶体的共同特点是配位数服从8N法则小为原子的价电子数,这就是说结构中每个原子都有8N个最近邻的原子。,共价晶体的特点:强度高、硬度高、脆性大、熔点高沸点高和挥发性能低,结构稳定。导电能力差。,典型的共价晶体结构 金刚石结构:金刚石便是碳的一种结晶形式。这里,每个碳原子均有4个等距离(0.154nm)的最近邻原子,全部按共价键结合,符合 8-N规则。其晶体结构属于复杂的面心立方结构,碳原子除按通常的fcc排列外,立方体内还有4个原子,它们的坐标分别为1/4 1/4 1/4,3/4 3/4 1/4,3/4 1/4 3/4,1/4 3/4 3/4,相当于晶内其中4个四面体间隙中心的位置。故晶胞内共含8个原子。实际上,该晶体结构可视为两个面心立方晶胞沿体对角线相对位移1/4距离穿插而成。,二氧化硅晶体结构,180,10928,Si,o,二氧化硅的晶体结构示意图,共价键,