工程弹塑性力学-第一章.ppt

上传人:小飞机 文档编号:6468517 上传时间:2023-11-02 格式:PPT 页数:66 大小:1.79MB
返回 下载 相关 举报
工程弹塑性力学-第一章.ppt_第1页
第1页 / 共66页
工程弹塑性力学-第一章.ppt_第2页
第2页 / 共66页
工程弹塑性力学-第一章.ppt_第3页
第3页 / 共66页
工程弹塑性力学-第一章.ppt_第4页
第4页 / 共66页
工程弹塑性力学-第一章.ppt_第5页
第5页 / 共66页
点击查看更多>>
资源描述

《工程弹塑性力学-第一章.ppt》由会员分享,可在线阅读,更多相关《工程弹塑性力学-第一章.ppt(66页珍藏版)》请在三一办公上搜索。

1、工程弹塑性力学,浙江大学 建筑工程学院,绪论,0.1 课程研究对象、研究任务0.2 基本假定0.3 几个基本概念0.4 参考书目,0.1 弹塑性力学的研究对象和任务,弹塑性力学:,研究可变形固体受到外荷载、温度变化及边界约束变动等作用时、弹塑性变形和应力状态的科学。,固体力学的一个分支学科,研究对象:,对实体结构、板壳结构、杆件的进一步分析。,研究方法:,材料力学、结构力学:简化的数学模型,研究任务:,弹塑性力学:较精确的数学模型,建立并给出用材料力学、结构力学方法无法求解的问题的理论和方法。,给出初等理论可靠性与精确度的度量。,学习目的:,确定一般工程结构的弹塑性变形与内力的分布规律。,确定

2、一般工程结构的承载能力。,为研究一般工程结构的强度、振动、稳定性打下理论基础。,0.2 基本假定,1).假定固体材料是连续介质连续性假定,2).物体为均匀的各向同性的,3).物体的变形属于小变形,4).物体原来是处于一种无应力的自然状态,0.3 几个基本概念,张量的概念,只需指明其大小即足以被说明的物理量,称为标量,温度、质量、力所做的功,除指明其大小还应指出其方向的物理量,称为矢量,物体的速度、加速度,在讨论力学问题时,仅引进标量和矢量的概念是不够的,如应力状态、应变状态、惯性矩、弹性模量等,张量,关于三维空间,描述一切物理恒量的分量数目可统一地表示成:M=rn=3n,标量:n=0,零阶张量

3、,矢量:n=1,一阶张量,应力,应变等:n=2,二阶张量,二阶以上的张量已不可能在三维空间有明显直观的几何意义。,0.3 几个基本概念,为了书写上的方便,在张量的记法中,都采用下标字母符号来表示和区别该张量的所有分量。这种表示张量的方法,就称为下标记号法。,下标记号法:,不重复出现的下标符号,在其变程N(关于三维空间N3)内分别取数1,2,3,N,重复出现的下标符号称为哑标号,取其变程N内所有分量,然后再求和,也即先罗列所有各分量,然后再求和。,自由标号:,哑标号:,0.3 几个基本概念,当一个下标符号在一项中出现两次时,这个下标符号应理解为取其变程N中所有的值然后求和,这就叫做求和约定。,求

4、和约定:,dij记号:Kroneker-delta记号,0.3 几个基本概念,凡是同阶的两个或两个以上的张量可以相加(减),并得到同阶的一个新张量,法则为:,张量的计算:,1、张量的加减,第一个张量中的每一个分量乘以第二个张量中的每一个分量,从而得到一个新的分量的集合新张量,新张量的阶数等于因子张量的阶数之和。,2、张量的乘法,张量导数就是把张量的每个分量都对坐标参数求导数。,3、张量函数的求导,0.4 主要参考书目,Foundations of Solid Mechanics,1、(冯元桢),2、杨桂通,3、徐秉业,A first course in continuum mechanics,

5、固体力学导论,连续介质力学导论,弹塑性力学,应用弹塑性力学,第一章 弹塑性力学基础,1.1 应力张量1.2 偏量应力张量1.3 应变张量1.4 应变速率张量1.5 应力、应变 Lode参数,1.1 应力张量,力学的语言,正应力,剪应力,过C点可以做无穷多个平面K,不同的面上的应力是不同的,到底如何描绘一点处的应力状态?,1).一点的应力状态,1.1 应力张量,一点的应力状态可由过该点的微小正平行六面体上的应力分量来确定。,应力张量,数学上,在坐标变换时,服从一定坐标变换式的九个数所定义的量叫做二阶张量。,用张量下标记号法,下标1、2、3表示坐标x1、x2、x3即x、y、z方向,(1.1),(1

6、.2),1.1 应力张量,2).一点斜面上的应力(不计体力),i:自由下标;j为求和下标(同一项中重复出现)。,斜截面外法线n的方向余弦:,令斜截面ABC的面积为1,(1.3),(1.4),1.1 应力张量,斜截面OABC上的正应力:,斜截面OABC上的剪应力:,(1.5),(1.6),1.1 应力张量,3).主应力及其不变量,主平面:剪应力等于零的截面,主应力-:主平面上的正应力,代入,采用张量下标记号,Kroneker delta记号,(1.7),(1.8),(1.9),1.1 应力张量,dij记号:Kroneker-delta记号,方向余弦满足条件:,采用张量表示,联合求解 l1,l2,

7、l3:,l1,l2,l3不全等于0,(1.10),(1.11),(1.12),(1.13),1.1 应力张量,联合求解 l1,l2,l3:,行列式展开后得:,简化后得,(1.14),(1.15),式中:,是关于的三次方程,它的三个根,即为三个主应力,其相应的三组方向余弦对应于三组主平面。,主应力大小与坐标选择无关,故J1,J2,J3也必与坐标选择无关。,1.1 应力张量,若坐标轴选择恰与三个主坐标重合:,(1.16),主剪应力面:平分两主平面夹角的平面,数值为:,(1.17),主剪应力面(t1),1.1 应力张量,最大最小剪应力:,取主方向为坐标轴取向,则一点处任一截面上的剪应力的计算式:,消

8、去l3:,由极值条件,1.1 应力张量,最大最小剪应力:,第一组解:,第二组解:,第三组解:,它们分别作用在与相应主方向成45的斜截面上,因为:,1.1 应力张量,4).八面体上的应力,沿主应力方向取坐标轴,与坐标轴等倾角的八个面组成的图形,称为八面体。,(1.19),八面体的法线方向余弦:,八面体平面上应力在三个坐标轴上的投影分别为:,八面体(每个坐标象限1个面),或,(1.20),1.1 应力张量,4).八面体上的应力,八面体面上的正应力为:,八面体面上的剪应力为:,八面体(每个坐标象限1个面),(1.23),(1.21),八面体面上的应力矢量为:,(1.22),平均正应力,1.1 应力张

9、量,例题:,已知一点的应力状态由以下一组应力分量所确定,即x3,y0,z0,xy1,yz 2,zx 1,应力单位为MPa。试求该点的主应力值。,代入式(1.14)后得:,解:,解得主应力为:,1.2 应力偏量张量,1).应力张量分解,物体的变形,(1.32),体积改变,形状改变,由各向相等的应力状态引起的,材料晶格间的移动引起的,球应力状态/静水压力,弹性性质,塑性性质,球形应力张量,偏量应力张量,1.2 应力偏量张量,1).应力张量分解,(1.31),球形应力张量,偏量应力张量,其中:,平均正应力/静水压力,1.2 应力偏量张量,2).主偏量应力和不变量,(1.31),二阶对称张量,其中:,

10、剪应力分量始终没有变化,主偏量应力,(1.33),1.2 应力偏量张量,证明偏应力状态 的主方向与原应力状态 的主方向重合,例:,设原应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)得,证明:,显然,方向余弦l1,l2,l3将由式(a)中的任意两式和l12+l22+l32=1所确定。,(a),若设偏应力状态 主方向的方向余弦为l1,l2,l3,则由式(1.9)同样得:,显然,方向余弦l1,l2,l3将由式(b)中的任意两式和l12+l22+l3 2=1所确定。,(b),由于:,l1=l1;l2=l2;l3=l3,可见式(a)与式(b)具有相同的系数,且已知l12+l22+l32=

11、l12+l22+l3 2=1,1.2 应力偏量张量,2).主偏量应力和不变量,(1.33),偏应力状态 的主方向与原应力状态 的主方向一致,主值为:,满足三次代数方程式:,(1.34),式中J1,J2,J3为不变量,(1.35),1.2 应力偏量张量,(1.40),利用J1=0,不变量J2还可写为:,(1.38),1.2 应力偏量张量,(1.43),3).等效应力(应力强度),在弹塑性力学中,为了使用方便,将 乘以系数 后,称之为等效应力,(1.41),简单拉伸时:,“等效”的命名由此而来。,各正应力增加或减少一个平均应力,等效应力的数值不变,这也说明等效应力与球应力状态无关,1.2 应力偏量

12、张量,(1.42),4).等效剪应力(剪应力强度),“等效”的命名由此而来。,例题:已知结构内某点的应力张量如右式,试求该点的球形应力张量、偏量应力张量、等效应力及主应力数值。,解:,1.2 应力偏量张量,等效应力:,1.2 应力偏量张量,关于主应力的方程为:,由主应力求等效应力:,1.2 应力偏量张量,1.3 应变张量,1).一点应变状态,位移,刚性位移,变形位移,物体内各点的位置虽然均有变化,但任意两点之间的距离却保持不变。,物体内任意两点之间的相对距离发生了改变。,要研究物体在外力作用下的变形规律,只需要研究物体内各点的相对位置变动情况,也即研究变形位移,位移函数,位置坐标的单值连续函数

13、,1.3 应变张量,微小六面体单元的变形,当物体在一点处有变形时,小单元体的尺寸(即单元体各棱边的长度)及形状(即单元体各面之间所夹直角)将发生改变。,由于变形很微小,可以认为两个平行面在坐标面上的投影只相差高阶微量,可忽略不计。,1.3 应变张量,微小六面体单元的变形,B点位移分量,D点位移分量,A点位移分量,xOy的改变量:,1.3 应变张量,变形后AB边长度的平方:,M点沿X方向上的线应变:,(a),(b),(c),代入(a)得:,略去高阶微量,同理,M点沿Y方向上的线应变:,1.3 应变张量,同理:,xOy的改变量,即剪应变:,1.3 应变张量,对角线AC线的转角:,刚性转动,1.3

14、应变张量,(1.44),1).一点应变状态,工程应变分量:,(几何方程/柯西几何关系),1.3 应变张量,(1.45),1).一点应变状态,受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。,定义:,应变张量:,(1.46),1.3 应变张量,2).主应变及其不变量,由全微分公式:,M点的位移分量,N点的位移分量,表示刚性转动,不引起应变,计算应变时可忽略。,1.3 应变张量,在主应变空间中:,主平面法线方向的线应变,主应变:,1.3 应变张量,类似于应力张量:,eij:二阶对称张量。主应变e1,e2,e3 满足:ei3-I1

15、ei2-I2ei-I3=0 I1、I2、I3 为应变张量不变量。,其中:,(1.47),(1.48),平均正应变:,1.3 应变张量,偏量应变张量:,(1.52),eij 的主轴方向与eij 的主方向一致,主值为:e1=e1-e,e2=e2-e,e3=e3-e满足三次代数方程式:,(1.50),(1.51),I2应用较广,又可表达为:,1.3 应变张量,等效应变(应变强度):,(1.54),等效剪应变(剪应变强度):,(1.55),1.4 应变速率张量,一般来说物体变形时,体内任一点的变形不但与坐标有关,而且与时间也有关。如以u、v、w表示质点的位移分量,则:,设应变速率分量为:,质点的运动速

16、度分量,1.4 应变速率张量,线应变速率,在小变形情况下,应变速率分量与应变分量之间存在有简单关系:,剪应变速率,1.4 应变速率张量,在小变形情况下的应变速率张量:,(1.56),可缩写为,在一般情况下,应变速率主方向与应变主方向不重合,且在加载过程中发生变化。,1.4 应变速率张量,应变增量:,应变增量由位移增量微分得:,由于时间度量的绝对值对塑性规律没有影响,因此dt可不代表真实时间,而是代表一个加载过程。因而用应变增量张量来代替应变率张量更能表示不受时间参数选择的特点。,(1.57),应变微分由两时刻应变差得:,泰勒级数展开,高阶微量,忽略高阶微量,1.5 应力和应变的Lode参数,一

17、、应力莫尔圆(表示一点应力状态的图形):,如果介质中某点的三个主应力的大小为已知,便可以在-平面内绘出相应的应力圆。,1.5 应力和应变的Lode参数,一、应力莫尔圆(表示一点应力状态的图形):,(1.61),1.5 应力和应变的Lode参数,一、应力莫尔圆(表示一点应力状态的图形):,(1.63),式(1.63)表明,当一点处于空间应力状态时,过该点的任一斜截面上的一对应力分量、一定落在分别以(1-2)2、(2-3)2、(3-1)2为半径的三个圆的圆周所包围的阴影面积(包括三个圆周)之内。,1.5 应力和应变的Lode参数,若在一应力状态上再叠加一个球形应力状态(各向等拉或各向等压),则应力

18、圆的三个直径并不改变,只是整个图形沿横轴发生平移。应力圆在横轴上的整体位置取决于球形应力张量;而各圆的大小(直径)则取决于偏应力张量,与球形应力张量无关。一点应力状态中的主应力按同一比例缩小或增大(应力分量的大小有改变,但应力状态的形式不变),则应力圆的三个直径也按同一比例缩小或增大,即应力变化前后的两个应力圆是相似的。这种情况相当于偏量应力张量的各分量的大小有了改变,但张量的形式保持不变。,1.5 应力和应变的Lode参数,二、应力Lode参数:,几何意义:应力圆上Q2A与Q1A之比,或两内圆直径之差与外圆直径之比。,球形应力张量对塑性变形没有明显影响,因而常把这一因素分离出来,而着重研究偏

19、量应力张量。为此,引进参数Lode参数:,Lode参数:表征Q2在Q1与Q3之间的相对位置,反映中间主应力对屈服的贡献。,(1.64),1.5 应力和应变的Lode参数,应力Lode参数的物理意义:,1、与平均应力无关;,2、其值确定了应力圆的三个直径之比;,3、如果两个应力状态的Lode参数相等,就说明两个应力状态 对应的应力圆是相似的,即偏量应力张量的形式相同;,Lode参数是排除球形应力张量的影响而描绘应力状态特征的一个参数。它可以表征偏应力张量的形式。,(1.65),1.5 应力和应变的Lode参数,简单应力状态的Lode参数:,单向压缩(s1=s2=0,s30,s2=s3=0)ms=

20、1 ms=-1,1.5 应力和应变的Lode参数,简单应力状态的Lode参数:,纯剪(s10,s2=0,s3=-s1):ms=0,1.5 应力和应变的Lode参数,为表征偏量应变张量的形式,引入应变Lode参数:,三、应变Lode参数:,如果两种应变状态的me 相等,则表明它们所对应的应变莫尔圆是相似的,也就是说,偏量应变张量的形式相同。,几何意义:应变莫尔圆上Q2A与Q1A之比,(1.66),1.6 弹性力学的基本方程,应力分量满足平衡方程:,一、平衡方程,(1.67),1.6 弹性力学的基本方程,弹性体的应力-应变关系服从虎克定律,二、物理方程,(1.72),1.6 弹性力学的基本方程,x对y,y对x求两次偏导,有:,三、应变协调方程,保证物体在变形后不会出现撕裂,套叠的现象,1.6 弹性力学的基本方程,类似可得三维问题的应变协调方程:,(1.82),1.6 弹性力学的基本方程,例题:,设有应变分量如右式,其余的应变分量均为零。若它们是一种可能的应变状态试确定各常数之间的关系。,解:,如果应变分量是一种可能的应变状态,则需满足变形协调方程。根据给定的应变分量,式(1.82)中的五个式子均恒满足、余下必须满足的应变协调方程为:,代入给定的应变分量有:,比较两边对应项系数有:,所以解为:,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号