《高等数学自考74二元函数偏导数的应用.ppt》由会员分享,可在线阅读,更多相关《高等数学自考74二元函数偏导数的应用.ppt(17页珍藏版)》请在三一办公上搜索。
7.5 二元函数偏导数的应用,在几何上的应用,二元函数极值的求法,小结,思考与练习,1.空间曲线的切线与法平面,在几何上的应用,即,例1,解,于是,切线方程为,法平面方程为,2.曲面的切平面方程与法线方程,为,例2,解,或,法线方程为,1、二元函数的极值,二元函数的极值问题,一般可以利用偏导数来解决。,定理7.7(极值存在必要条件),使,二元函数极值的求法,定理7.8(极值存在充分条件),令,第一步,第二步,第三步,例3,解,(1)求驻点,解方程组,(2)判断驻点是否极值点,,若是,说明取得极值情况,又由于,2.条件极值与拉格朗日乘数法,在前面所讨论的极值中,除对自变量给出定义域外,并,无其它条件限制,我们把这一类极值称为无条件极值,而把,对自变量还需附加其他条件的极值问题称为条件极值。条件,条件极值问题有如下两种解法。,方法1,例4,解,由一元函数极值存在的必要条件,得,所以,方法2(拉格朗日数乘法),这方法还可以推广到自变量多于两个而条件多于一个的情形。,至于如何确定所求得的点是否为极值点,是极大值点还,是极小值点,在实际问题中往往可根据问题本身的性质来判定。,例5,解,作辅助函数,令,由前三式,得,即当长方体的长、宽、高相等时,长方体的体积最大。,注:求二元函数极值的方法(1)换元法。(2)拉格朗日数乘法。,作业,P142 习题18 习题19 习题21,