分类计数与分步计数原理.ppt

上传人:牧羊曲112 文档编号:6554446 上传时间:2023-11-12 格式:PPT 页数:19 大小:278.16KB
返回 下载 相关 举报
分类计数与分步计数原理.ppt_第1页
第1页 / 共19页
分类计数与分步计数原理.ppt_第2页
第2页 / 共19页
分类计数与分步计数原理.ppt_第3页
第3页 / 共19页
分类计数与分步计数原理.ppt_第4页
第4页 / 共19页
分类计数与分步计数原理.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《分类计数与分步计数原理.ppt》由会员分享,可在线阅读,更多相关《分类计数与分步计数原理.ppt(19页珍藏版)》请在三一办公上搜索。

1、,一、复习回顾:,两个计数原理的内容是什么?解决两个计数原理问题需要注意什么问题?有哪些技巧?,练习:,三个比赛项目,六人报名参加。)每人参加一项有多少种不同的方法?)每项人,且每人至多参加一项,有多少种不同的方法?)每项人,每人参加的项数不限,有多少种不同的方法?,例1 用0,1,2,3,4,5这六个数字,(1)可以组成多少个各位数字不允许重复的三位的奇数?(2)可以组成多少个各位数字不重复的小于1000的自然数?(3)可以组成多少个大于3000,小于5421且各位数字不允许重复的四位数?,升华发展,一、排数字问题,1、将数字1,2,3,4,填入标号为1,2,3,4的四个方格里,每格填一个数

2、字,则每个格子的标号与所填的数字均不同的填法有_种,引申:,号方格里可填,三个数字,有种填法。号方格填好后,再填与号方格内数字相同的号的方格,又有种填法,其余两个方格只有种填法。所以共有3*3*1=9种不同的方法。,二、映射个数问题:,例2 设A=a,b,c,d,e,f,B=x,y,z,从A到B共有多少种不同的映射?,三、染色问题:,例3 有n种不同颜色为下列两块广告牌着色,要求在四个区域中相邻(有公共边界)区域中不用同一种颜色.(1)若n=6,为(1)着色时共有多少种方法?(2)若为(2)着色时共有120种不同方法,求n(1)(2),、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色

3、中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?,解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1 种,第四步,m4=1 种,所以根据乘法原理,得到不同的涂色方案种数共有 N=3 2 11=6 种。,、如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?,若用2色、4色、5色等,结果又怎样呢?,答:它们的涂色方案种数分别是 0、4322=48、5433=180种等。,思考:,分析:如图,A、B、C三个区域

4、两两相邻,A与D不相邻,因此A、B、C三个区域的颜色两两不同,A、D两个区域可以同色,也可以不同色,但D与B、C不同色。由此可见我们需根据A与D同色与不同色分成两大类。,解:先分成两类:第一类,D与A不同色,可分成四步完成。第一步涂A有5种方法,第二步涂B有4种方法;第三步涂C有3种方法;第四步涂D有2种方法。根据分步计数原理,共有5432120种方法。,根据分类计数原理,共有120+60180种方法。,第二类,A、D同色,分三步完成,第一步涂A和D有5种方法,第二步涂B有4种方法;第三步涂C有3种方法。根据分步计数原理,共有54360种方法。,、某城市在中心广场建造一个花圃,花圃分为6个部分

5、(如右图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种.(以数字作答),(1)与同色,则也同色或也同色,所以共有N1=43221=48种;,所以,共有N=N1+N2+N3=48+48+24=120种.,(2)与同色,则或同色,所以共有N2=43221=48种;,(3)与且与同色,则共N3=4321=24种,解法一:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求,6、将种作物种植在如图所示的块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有种(以数字作答),42,5、如图,是5个

6、相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻的正方形涂不同的颜色。如果颜色可反复使用,那么共有多少种涂色方法?,四、子集问题,规律:n元集合 的不同子集有个。,例:集合A=a,b,c,d,e,它的子集个数为,真子集个数为,非空子集个数为,非空真子集个数为。,五、综合问题:,例4 若直线方程ax+by=0中的a,b可以从0,1,2,3,4这五个数字中任取两个不同的数字,则方程所表示的不同的直线共有多少条?,、75600有多少个正约数?有多少个奇约数?,解:由于 75600=2433527,75600的每个约数都可以写成的形式,其中,于是,要确定75600

7、的一个约数,可分四步完成,即i,j,k,l分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5432=120个.,解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=12=2 条 第二类,m2=12=2 条 第三类,m3=12=2 条 所以,根据加法原理,从顶点A到顶点C1最近路线共有 N=2+2+2=6 条。,3.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?,4、如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有()对A.12 B.24 C.36 D.48,B,5.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?,甲地,乙地,丙地,丁地,解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以 m1=23=6 种不同的走法;第二类,由甲经丁去丙,也需分两步,所以 m2=42=8 种不同的走法;所以从甲地到丙地共有 N=6+8=14 种不同的走法。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号