电子技术基础课程.ppt

上传人:牧羊曲112 文档编号:6592935 上传时间:2023-11-15 格式:PPT 页数:74 大小:6.83MB
返回 下载 相关 举报
电子技术基础课程.ppt_第1页
第1页 / 共74页
电子技术基础课程.ppt_第2页
第2页 / 共74页
电子技术基础课程.ppt_第3页
第3页 / 共74页
电子技术基础课程.ppt_第4页
第4页 / 共74页
电子技术基础课程.ppt_第5页
第5页 / 共74页
点击查看更多>>
资源描述

《电子技术基础课程.ppt》由会员分享,可在线阅读,更多相关《电子技术基础课程.ppt(74页珍藏版)》请在三一办公上搜索。

1、电子技术基础,主编:姜桥,制作:李芝成,2010年2月,欢迎学习,第1章 常用的半导体器件,第2章 基本单管放大电路,第3章 多级放大电路,第4章 负反馈放大电路,第6章 直流稳压电源,第8章 组合逻辑电路,第9章 集成触发器,第5章 集成运算放大器的应用,第7章 逻辑代数与逻辑门电路,电子技术基础,第10章 时序逻辑电路,第11章 大规模集成电路,补充:电路分析的一些基本知识,1.电路和电路模型,一、电路:电工设备构成的整体,它为电流的流通提供路径。,电路主要由电源、负载、连接导线及开关等构成。,电源(source):提供能量或信号的发生器。,负载(load):将电能转化为其它形式能量的用电

2、设备,或对信号进行处理的设备。,导线(line)、开关(switch):将电源与负载接成通路装置。,低频信号发生器的内部结构,二、电路模型(circuit model),1.理想电路元件:根据实际电路元件所具备的电磁性质来设想的具有某种单一电磁性质的元件,其u,i关系可用简单的数学式子严格表示。,几种基本的电路元件:,电阻元件:表示消耗电能的元件。,电感元件:表示各种电感线圈产生磁场,储存磁场能的元件。,电容元件:表示各种电容器产生电场,储存电场能的元件。,电源元件:表示各种将其它形式的能量转变成电能的元件。,2、电路中的主要物理量 主要有电压、电流、电荷、磁链。在线性电路分析中常用电流、电压

3、、电位等。另外,电功率和电能量也是重要的物理量。,(1)电流(current):带电质点的运动形成电流。,电流的大小用电流强度表示:单位时间内通过导体截面的电量。,单位:A(安)(Ampere,安培),(2)电压(voltage):电场中某两点A、B间的电压(降)UAB 等于将点电荷q从A点移至B点电场力所做的功WAB与该点电荷q的比值,即,单位:V(伏)(Volt,伏特),当把点电荷q由B移至A时,需外力克服电场力做同样的功WAB=WBA,此时可等效视为电场力做了负功WAB,则B到A的电压为,(3)电位:电路中为分析的方便,常在电路中选某一点为参考点,把任一点到参考点的电压称为该点的电位。,

4、参考点的电位一般选为零,所以,参考点也称为零电位点。,电位用U表示,单位与电压相同,也是V(伏)。,设c点为电位参考点,则 Uc=0,Ua=Uac,Ub=Ubc,Ud=Udc,两点间电压与电位的关系:,仍设c点为电位参考点,Uc=0,Uac=Ua,Udc=Ud,Uad=Uac Udc=UaUd,前例,结论:电路中任意两点间的电压等于该两点间的电位之差。,例2.,1.5 V,1.5 V,已知 Uab=1.5 V,Ubc=1.5 V。求 Ua;Ub;Uc;Uac,(1)以a点为参考点,Ua=0,Uab=UaUb Ub=Ua Uab=1.5 V,Ubc=UbUc Uc=Ub Ubc=1.51.5=3

5、 V,Uac=UaUc=0(3)=3 V,(2)以b点为参考点,Ub=0,Uab=UaUb Ua=Ub+Uab=1.5 V,Ubc=UbUc Uc=Ub Ubc=1.5 V,Uac=UaUc=1.5(1.5)=3 V,结论:电路中电位参考点可任意选择;当选择不同的电位参考时,电路中各点电位均不同,但任意两点间电压保持不变。,3.基尔霍夫定律,基尔霍夫定律包括基尔霍夫电流定律(Kirchhoffs Current LawKCL)和基尔霍夫电压定律(Kirchhoffs Voltage LawKVL)。它反映了电路中所有支路电流和电压的约束关系,是分析集总参数电路的基本定律。基尔霍夫定律与元件特性

6、构成了电路分析的基础。,一、几个名词:(定义),1.支路:电路中通过同一电流的每个分支,称为一条支路。(电路中的支路数用b来表示),2.结点:三条或三条以上支路的连接点称为结点(结点数用n来表示)。,4.回路:由支路组成的闭合路径(回路数用 l 来表示)。,b=3,3.路径:两结点间的一条通路。路径由支路构成。,l=3,n=2,二、基尔霍夫电流定律(KCL):在集总参数电路中,任何时刻,对任一结点,所有流出(流入)结点的各支路电流的代数和恒等于零。即,物理基础:电荷守恒,电流连续性。流出任一结点的支路电流等于流入该结点的支路电流。,令流出为“+”(支路电流背离结点),i1+i2i3+i4=0i

7、1+i3=i2+i4,对结点b:i1+i210(12)=0 i2=1A,例:,对结点a:47i1=0 i1=3A,(1)电流实际方向和参考方向之间关系;(2)流入、流出结点。,KCL可推广到一个封闭面:,注意电流正负符号:,i1+i2+i3=0,(其中必有负的电流),注意列写KCL方程时,各支路电流的方向采用的是参考方向。,首先考虑选定一个绕行方向:顺时针或逆时针。,例:,若选顺时针方向绕行时:,三、基尔霍夫电压定律(KVL):在集总参数电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于零。即,uab+ubc-udc-ued-ufe-uaf=0,uab+ubc-udc-ued-ufe-u

8、af=0,即:uab+ubc=uaf+ufe+ued+udc,uac=uab+ubc,uac=uaf+ufe+ued+udc,证明:,uab+ubc-udc-ued-ufe-uaf,=(UaUb)+(Ub Uc)(UdUc)(Ue Ud)(Uf Ue)(Ua Uf),=0,推论:电路中任意两点间的电压等于两点间任一条路径经过的各元件电压的代数和。元件电压方向与路径绕行方向一致时取正号,相反取负号。,R1I1US1+R2I2R3I3+R4I4+US4=0R1I1+R2I2R3I3+R4I4=US1US4,电阻压降,电源压升,uab=R2I2 ubc=R3I3 udc=R4I4 ued=US4 u

9、fe=R1I1 uaf=US1,uab+ubc-udc-ued-ufe-uaf=0,代入左式:,得:,上式中,电流参考方向与回路绕行方向一致者,RkIk前面取“”号;电压源的电动势的方向(参考极性)与回路绕行方向一致者,Usk前面取“”号。,第1章 常用的半导体器件,1.1 PN结,1.2 半导体二极管,1.3 特殊二极管,1.4 双极型三极管,1.5 场效应晶体管,学习目的与要求,了解本征半导体、P型和N型半导体的特征及PN结的形成过程;熟悉二极管的伏安特性及其分类、用途;理解三极管的电流放大原理,掌握其输入和输出特性的分析方法;理解双极型和单极型三极管在控制原理上的区别;初步掌握工程技术人

10、员必需具备的分析电子电路的基本理论、基本知识和基本技能。,1.1 PN结,绕原子核高速旋转的核外电子带负电。,自然界的一切物质都是由分子、原子组成的。原子又由一个带正电的原子核和在它周围高速旋转着的带有负电的电子组成。,原子结构中:,原子核中有质子和中子,其中质子带正电,中子不带电。,1.导体、半导体和绝缘体,(1)导体,导体的最外层电子数通常是13个,且距原子核较远,因此受原子核的束缚力较小。由于温度升高、振动等外界的影响,导体的最外层电子就会获得一定能量,从而挣脱原子核的束缚而游离到空间成为自由电子。因此,导体在常温下存在大量的自由电子,具有良好的导电能力。常用的导电材料有银、铜、铝、金等

11、。,导体的特点:,内部含有大量的自由电子,(2)半导体,半导体的最外层电子数一般为4个,在常温下存在的自由电子数介于导体和绝缘体之间,因而在常温下半导体的导电能力也是介于导体和绝缘体之间。常用的半导体材料有硅、锗、硒等。,半导体的特点:,虽然导电性能介于导体和绝缘体之间,但是具有其独特的性能。(后面详细介绍),(3)绝缘体,绝缘体的最外层电子数一般为68个,且距原子核较近,因此受原子核的束缚力较强而不易挣脱其束缚。常温下绝缘体内部几乎不存在自由电子,因此导电能力极差或不导电。常用的绝缘体材料有橡胶、云母、陶瓷等。,绝缘体的特点:,内部几乎没有自由电子,因此不导电。,半导体的导电能力虽然介于导体

12、和绝缘体之间,但半导体的应用却极其广泛,这是由半导体的独特性能决定的:,光敏性半导体受光照后,其导电能力大大增强;,热敏性受温度的影响,半导体导电能力变化很大;,掺杂性在半导体中掺入少量特殊杂质,其导电 能力极大地增强;,半导体材料的独特性能是由其内部的导电机理所决定的。,2.半导体的独特性能,3.本征半导体,最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价元素,即每个原子最外层电子数为4个。,Si(硅原子),Ge(锗原子),硅原子和锗原子的简化模型图,因为原子呈电中性,所以简化模型图中的原子核只用带圈的+4符号表示即可。,本征半导体纯净的、不含其他杂质的半导体。,本征半导体原子核

13、最外层的价电子都是4个,称为四价元素,它们排列成非常整齐的晶格结构。在本征半导体的晶格结构中,每一个原子均与相邻的四个原子结合,即与相邻四个原子的价电子两两组成电子对,构成共价键结构。,实际上半导体的晶格结构是三维的。,晶格结构,共价键结构,从共价键晶格结构来看,每个原子外层都具有8个价电子。但价电子是相邻原子共用,所以稳定性并不能象绝缘体那样好。,在游离走的价电子原位上留下一个不能移动的空位,叫空穴。,受光照或温度上升影响,共价键中价电子的热运动加剧,一些价电子会挣脱原子核的束缚游离到空间成为自由电子。,由于热激发而在晶体中出现电子空穴对的现象称为本征激发。,本征激发的结果,造成了半导体内部

14、自由电子载流子运动的产生,由此本征半导体的电中性被破坏,使失掉电子的原子变成带正电荷的离子。,由于共价键是定域的,这些带正电的离子不会移动,即不能参与导电,成为晶体中固定不动的带正电离子。,受光照或温度上升影响,共价键中其它一些价电子直接跳进空穴,使失电子的原子重新恢复电中性。,价电子填补空穴的现象称为复合。,此时整个晶体带电吗?为什么?,参与复合的价电子又会留下一个新的空位,而这个新的空穴仍会被邻近共价键中跳出来的价电子填补上,这种价电子填补空穴的复合运动使本征半导体中又形成一种不同于本征激发下的电荷迁移,为区别于本征激发下自由电子载流子的运动,我们把价电子填补空穴的复合运动称为空穴载流子运

15、动。,半导体的导电机理与金属导体导电机理有本质上的区别:金属导体中只有自由电子一种载流子参与导电;而半导体中则是本征激发下的自由电子和复合运动形成的空穴两种载流子同时参与导电。两种载流子电量相等、符号相反,即自由电子载流子和空穴载流子的运动方向相反。,自由电子载流子运动可以形容为没有座位人的移动;空穴载流子运动则可形容为有座位的人依次向前挪动座位的运动。半导体内部的这两种运动总是共存的,且在一定温度下达到动态平衡。,半导体的导电机理,本征半导体虽然有自由电子和空穴两种载流子,但由于数量极少导电能力仍然很低。如果在其中掺入某种元素的微量杂质,将使掺杂后的杂质半导体的导电性能大大增强。,五价元素磷

16、(P),掺入磷杂质的硅半导体晶格中,自由电子的数量大大增加。因此自由电子是这种半导体的导电主流。,在室温情况下,本征硅中的磷杂质等于10-6数量级时,电子载流子的数目将增加几十万倍。掺入五价元素的杂质半导体由于自由电子多而称为电子型半导体,也叫做N型半导体。,4.杂质半导体,三价元素硼(B),掺入硼杂质的硅半导体晶格中,空穴载流子的数量大大增加。因此空穴是这种半导体的导电主流。,一般情况下,杂质半导体中的多数载流子的数量可达到少数载流子数量的1010倍或更多,因此,杂质半导体比本征半导体的导电能力可增强几十万倍。,掺入三价元素的杂质半导体,由于空穴载流子的数量大大于自由电子载流子的数量而称为空

17、穴型半导体,也叫做P型半导体。在P型半导体中,多数载流子是空穴,少数载流子是自由电子,而不能移动的离子带负电。,不论是N型半导体还是P型半导体,其中的多子和少子的移动都能形成电流。但是,由于多子的数量远大于少子的数量,因此起主要导电作用的是多数载流子。,注意:,掺入杂质后虽然形成了N型或P型半导体,但整个半导体晶体仍然呈电中性。,一般可近似认为多数载流子的数量与杂质的浓度相等。,P型半导体中的空穴多于自由电子,是否意味着带正电?,自由电子导电和空穴导电的区别在哪里?空穴载流子的形成是否由自由电子填补空穴的运动形成的?,想想 练练,5.PN结及其形成过程,PN结的形成,杂质半导体的导电能力虽然比

18、本征半导体极大增强,但它们并不能称为半导体器件。在电子技术中,PN结是一切半导体器件的“元概念”和技术起始点。,P区,N区,空间电荷区,内电场,动画演示,PN结形成的过程中,多数载流子的扩散和少数载流子的漂移共存。开始时多子的扩散运动占优势,扩散运动的结果使PN结加宽,内电场增强;另一方面,内电场又促使了少子的漂移运动:P区的少子电子向N区漂移,补充了交界面上N区失去的电子,同时,N区的少子空穴向P区漂移,补充了原交界面上P区失去的空穴,显然漂移运动减少了空间电荷区带电离子的数量,削弱了内电场,使PN结变窄。最后,扩散运动和漂移运动达到动态平衡,空间电荷区的宽度基本稳定,即PN结形成。,PN结

19、内部载流子基本为零,因此导电率很低,相当于介质。但PN结两侧的P区和N区导电率很高,相当于导体,这一点和电容比较相似,所以说PN结具有电容效应。,6.PN结的单向导电性,PN结反向偏置时的情况,PN结的单向导电性,PN结的上述“正向导通,反向阻断”作用,说明它具有单向导电性,PN结的单向导电性是它构成半导体器件的基础。,由于常温下少数载流子的数量不多,故反向电流很小,而且当外加电压在一定范围内变化时,反向电流几乎不随外加电压的变化而变化,因此反向电流又称为反向饱和电流。反向饱和电流由于很小一般可以忽略,从这一点来看,PN结对反向电流呈高阻状态,也就是所谓的反向阻断作用。值得注意的是,由于本征激

20、发随温度的升高而加剧,导致电子空穴对增多,因而反向电流将随温度的升高而成倍增长。反向电流是造成电路噪声的主要原因之一,因此,在设计电路时,必须考虑温度补偿问题。,PN结中反向电流的讨论,2.半导体受温度和光照影响,产生本征激发现象而出现电子、空穴对;同时,其它价电子又不断地“转移跳进”本征激发出现的空穴中,产生价电子与空穴的复合。在一定温度下,电子、空穴对的激发和复合最终达到动态平衡状态。平衡状态下,半导体中的载流子浓度一定,即反向电流的数值基本不发生变化。,1.半导体中少子的浓度虽然很低,但少子对温度非常敏感,因此温度对半导体器件的性能影响很大。而多子因浓度基本上等于杂质原子的掺杂浓度,所以

21、说多子的数量基本上不受温度的影响。,4.PN结的单向导电性是指:PN结的正向电阻很小,因此正向偏置时多子构成的扩散电流极易通过PN结;同时PN结的反向电阻很大,因此反向偏置时基本上可以认为电流无法通过PN结。,3.空间电荷区的电阻率很高,是指其内电场阻碍多数载流子扩散运动的作用,由于这种阻碍作用,使得扩散电流难以通过空间电荷区,即空间电荷区对扩散电流呈现高阻作用。,学习与归纳,1.2 半导体二极管,把PN结用管壳封装,然后在P区和N区分别向外引出一个电极,即可构成一个二极管。二极管是电子技术中最基本的半导体器件之一。根据其用途分有检波管、开关管、稳压管和整流管等。,硅高频检波管,开关管,稳压管

22、,整流管,发光二极管,电子工程实际中,二极管应用得非常广泛,上图所示即为各类二极管的部分产品实物图。,1.二极管的基本结构和类型,点接触型:结面积小,适用于 高频检波、脉冲电路及计算机中的开关元件。,外壳,触丝,N型锗片,正极引线,负极引线,面接触型:结面积大,适用于 低频整流器件。,负极引线,底座,金锑合金,PN结,铝合金小球,正极引线,普通二极管图符号,稳压二极管图符号,发光二极管图符号,使用二极管时,必须注意极性不能接反,否则电路非但不能正常工作,还有毁坏管子和其他元件的可能。,2.二极管的伏安特性,二极管的伏安特性是指流过二极管的电流与两端所加电压的函数关系。二极管既然是一个PN结,其

23、伏安特性当然具有“单向导电性”。,二极管的伏安特性呈非线性,特性曲线上大致可分为四个区:,外加正向电压超过死区电压(硅管0.5V,锗管0.1V)时,内电场大大削弱,正向电流迅速增长,二极管进入正向导通区。,死区,正向导通区,反向截止区,当外加正向电压很低时,由于外电场还不能克服PN结内电场对多数载流子扩散运动的阻力,故正向电流很小,几乎为零。这一区域称之为死区。,外加反向电压超过反向击穿电压UBR时,反向电流突然增大,二极管失去单向导电性,进入反向击穿区。,反向击穿区,反向截止区内反向饱和电流很小,可近似视为零值。,正向导通区和反向截止区的讨论,当外加正向电压大于死区电压时,二极管由不导通变为

24、导通,电压再继续增加时,电流迅速增大,而二极管端电压却几乎不变,此时二极管端电压称为正向导通电压。,硅二极管的正向导通电压约为0.7V,锗二极管的正向导通电压约为0.3V。,在二极管两端加反向电压时,将有很小的、由少子漂移运动形成的反向饱和电流通过二极管。,反向电流有两个特点:一是它随温度的上升增长很快,二是在反向电压不超过某一范围时,反向电流的大小基本恒定,而与反向电压的高低无关(与少子的数量有限)。所以通常称它为反向饱和电流。,3.二极管的主要参数,(1)最大整流电流IDM:指二极管长期运行时,允许通过的最大正向平均电流。其大小由PN结的结面积和外界散热条件决定。,(2)最高反向工作电压U

25、RM:指二极管长期安全运行时所能承受的最大反向电压值。手册上一般取击穿电压的一半作为最高反射工作电压值。,(3)反向电流IR:指二极管未击穿时的反向电流。IR值越小,二极管的单向导电性越好。反向电流随温度的变化而变化较大,这一点要特别加以注意。,(4)最大工作频率fM:此值由PN结的结电容大小决定。若二极管的工作频率超过该值,则二极管的单向导电性将变差。,4.二极管的应用举例,注意:分析实际电路时为简单化,通常把二极管进行理想化处理,即正偏时视其为“短路”,截止时视其为“开路”。,UD=0,RD=,正向导通时相当一个闭合的开关,+,反向阻断时相当一个打开的开关,(1)二极管的开关作用,(2)二

26、极管的整流作用,将交流电变成单方向脉动直流电的过程称为整流。利用二极管的单向导电性能就可获得各种形式的整流电路。,二极管半波整流电路,二极管全波整流电路,桥式整流电路简化图,二极管桥式整流电路,(3)二极管的限幅作用,图示为一限幅电路。电源uS是一个周期性的矩形脉冲,高电平幅值为+5V,低电平幅值为-5V。试分析电路的输出电压为多少。,分析,当输入电压ui=5V时,二极管反偏截止,此时电路可视为开路,输出电压u0=0V;,当输入电压ui=+5V时,二极管正偏导通,导通时二极管管压降近似为零,故输出电压u0+5V。,显然输出电压u0限幅在0+5V之间。,u0,半导体二极管工作在击穿区,是否一定被

27、损坏?为什么?,你会做吗?,何谓死区电压?硅管和锗管死区电压的典型值各为多少?为何会出现死区电压?,检验学习结果,为什么二极管的反向电流很小且具有饱和性?当环境温度升高时又会明显增大?,稳压二极管的反向电压几乎不随反向电流的变化而变化、这就是稳压二极管的显著特性。,稳压二极管是一种特殊的面接触型二极管,其反向击穿可逆。,正向特性与普通二极管相似,反向,IZ,1.3 特殊二极管,1.稳压二极管,实物图,图符号及文字符号,显然稳压管的伏安特性曲线比普通二极管的更加陡峭。,使用稳压二极管时应该注意的事项,(1)稳压二极管正负极的判别,+,(2)稳压二极管使用时,应反向接入电路,UZ,(3)稳压管应接

28、入限流电阻,(4)电源电压应高于稳压二极管的稳压值,(5)稳压管都是硅管。其稳定电压UZ最低为3V,高的可达 300V,稳压二极管在工作时的正向压降约为0.6V。,思索与回顾,二极管的反向击穿特性:当外加反向电压超过击穿电压时,通过二极管的电流会急剧增加。击穿并不意味着管子一定要损坏,如果我们采取适当的措施限制通过管子的电流,就能保证管子不因过热而烧坏。在反向击穿状态下,让通过管子的电流在一定范围内变化,这时管子两端电压变化很小,利用这一点可以达到“稳压”效果。稳压二极管就是工作在反向击穿区。稳压管稳压电路中一般都要加限流电阻R,使稳压管电流工作在Izmax和Izmix的范围内。应用中稳压管要

29、采取适当措施限制通过管子的电流值,以保证管子不会造成热击穿。,发光二极管是一种能把电能直接转换成光能的固体发光元件。发光二极管和普通二极管一样,管芯由PN结构成,具有单向导电性。,实物图,图符号和文字符号,单个发光二极管常作为电子设备通断指示灯或快速光源及光电耦合器中的发光元件等。发光二极管一般使用砷化镓、磷化镓等材料制成。现有的发光二极管能发出红黄绿等颜色的光。,发光管正常工作时应正向偏置,因死区电压较普通二极管高,因此其正偏工作电压一般在1.3V以上。,发光管属功率控制器件,常用来作为数字电路的数码及图形显示的七段式或阵列器件。,2.发光二极管,光电二极管也称光敏二极管,是将光信号变成电信

30、号的半导体器件,其核心部分也是一个PN结。光电二极管PN结的结面积较小、结深很浅,一般小于一个微米。,光电二极管和稳压管类似,也是工作在反向电压下。无光照时,反向电流很小,称为暗电流;有光照射时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分价电子挣脱共价键的束缚,产生电子空穴对,称为光生载流子。光生载流子在反向电压作用下形成反向光电流,其强度与光照强度成正比。,3.光电二极管,光电二极管也称光敏二极管,同样具有单向导电性,光电管管壳上有一个能射入光线的“窗口”,这个窗口用有机玻璃透镜进行封闭,入射光通过透镜正好射在管芯上。,实物图,图符号和文字符号,1.利用稳压管或普通二极

31、管的正向压降,是否也可以稳压?,你会做吗?,检验学习结果,2.现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。试问:(1)若将它们串联相接,可得到几种稳压值?各为多少?(2)若将它们并联相接,又可得到几种稳压值?各为多少?,3.在右图所示电路中,发光二极管导通电压UD1.5V,正向电流在515mA时才能正常工作。试问图中开关S在什么位置时发光二极管才能发光?R的取值范围又是多少?,1.4 双极型三极管,三极管是组成各种电子电路的核心器件。三极管的产生使PN结的应用发生了质的飞跃。,1.4.1.双极型三极管的基本结构和类型,双极型晶体管分有NPN型和PNP型,虽然它们外形

32、各异,品种繁多,但它们的共同特征相同:都有三个分区、两个PN结和三个向外引出的电极:,发射极e,发射结,集电结,基区,发射区,集电区,集电极c,基极b,NPN型,PNP型,根据制造工艺和材料的不同,三极管分有双极型和单极型两种类型。若三极管内部的自由电子载流子和空穴载流子同时参与导电,就是所谓的双极型。如果只有一种载流子参与导电,即为单极型。,NPN型三极管图符号,大功率低频三极管,小功率高频三极管,中功率低频三极管,目前国内生产的双极型硅晶体管多为NPN型(3D系列),锗晶体管多为PNP型(3A系列),按频率高低有高频管、低频管之别;根据功率大小可分为大、中、小功率管。,e,c,b,PNP型

33、三极管图符号,e,c,b,注意:图中箭头方向为发射极电流的方向。,1.4.2.双极型三极管的电流放大作用,晶体管芯结构剖面图,e发射极,集电区N,基区P,发射区N,b基极,c集电极,晶体管实现电流放大作用的内部结构条件,(1)发射区掺杂浓度很高,以便有足够的载流子供“发射”。,(2)为减少载流子在基区的复合机会,基区做得很薄,一般为几个微米,且掺杂浓度较发射极低。,(3)集电区体积较大,且为了顺利收集边缘载流子,掺杂浓度很低。,可见,双极型三极管并非是两个PN 结的简单组合,而是利用一定的掺杂工艺制作而成。因此,绝不能用两个二极管来代替,使用时也决不允许把发射极和集电极接反。,晶体管实现电流放

34、大作用的外部条件,(1)发射结必须“正向偏置”,以利于发射区电子的扩散,扩散电流即发射极电流ie,扩散电子的少数与基区空穴复合,形成基极电流ib,多数继续向集电结边缘扩散。,(2)集电结必须“反向偏置”,以利于收集扩散到集电结边缘的多数扩散电子,收集到集电区的电子形成集电极电流ic。,IE,IC,IB,整个过程中,发射区向基区发射的电子数等于基区复合掉的电子与集电区收集的电子数之和,即:IE=IB+IC,结论,由于发射结处正偏,发射区的多数载流子自由电子将不断扩散到基区,并不断从电源补充进电子,形成发射极电流IE。,回顾与总结,1.发射区向基区扩散电子的过程,由于基区很薄,且多数载流子浓度又很

35、低,所以从发射极扩散过来的电子只有很少一部分和基区的空穴相复合形成基极电流IB,剩下的绝大部分电子则都扩散到了集电结边缘。,2.电子在基区的扩散和复合过程,集电结由于反偏,可将从发射区扩散到基区并到达集电区边缘的电子拉入集电区,从而形成较大的集电极电流IC。,3.集电区收集电子的过程,只要符合三极管发射区的杂质浓度大大于基区的掺杂浓度,基区的掺杂浓度又大大于集电区的杂质浓度,且基区很薄的内部条件,再加上晶体管的发射结正偏、集电结反偏的外部条件,三极管就具有了放大电流的能力。,三极管的集电极电流IC稍小于IE,但远大于IB,IC与IB的比值在一定范围内基本保持不变。特别是基极电流有微小的变化时,

36、集电极电流将发生较大的变化。例如,IB由40A增加到50A时,IC将从3.2mA增大到4mA,即:,显然,双极型三极管具有电流放大能力。式中的值称为三极管的电流放大倍数。不同型号、不同类型和用途的三极管,值的差异较大,大多数三极管的值通常在几十至几百的范围。,由此可得:微小的基极电流IB可以控制较大的集电极电流IC,故双极型三极管属于电流控制器件。,1.4.3 双极型三极管的特性曲线,所谓特性曲线是指各极电压与电流之间的关系曲线,是三极管内部载流子运动的外部表现。从工程应用角度来看,外部特性更为重要。,(1)输入特性曲线,以常用的共射极放大电路为例说明,UCE=0V,令UBB从0开始增加,令U

37、CC为0,UCE=0时的输入特性曲线,UCE为0时,令UBB重新从0开始增加,增大UCC,让UCE=0.5V,UCE=1V,UCE=0.5V,UCE=0.5V的特性曲线,继续增大UCC,让UCE=1V,令UBB重新从0开始增加,UCE=1V,UCE=1V的特性曲线,继续增大UCC使UCE=1V以上的多个值,结果发现:之后的所有输入特性几乎都与UCE=1V的特性相同,曲线基本不再变化。,实用中三极管的UCE值一般都超过1V,所以其输入特性通常采用UCE=1V时的曲线。从特性曲线可看出,双极型三极管的输入特性与二极管的正向特性非常相似。,UCE1V的特性曲线,(2)输出特性曲线,先把IB调到某一固

38、定值保持不变。,当IB不变时,输出回路中的电流IC与管子输出端电压UCE之间的关系曲线称为输出特性。,然后调节UCC使UCE从0增大,观察毫安表中IC的变化并记录下来。,根据记录可给出IC随UCE变化的伏安特性曲线,此曲线就是晶体管的输出特性曲线。,IB,0,再调节IB1至另一稍小的固定值上保持不变。,仍然调节UCC使UCE从0增大,继续观察毫安表中IC的变化并记录下来。,根据电压、电流的记录值可绘出另一条IC随UCE变化的伏安特性曲线,此曲线较前面的稍低些。,IB1,IB2,IB3,IB=0,如此不断重复上述过程,我们即可得到不同基极电流IB对应相应IC、UCE数值的一组输出特性曲线。,输出

39、曲线开始部分很陡,说明IC随UCE的增加而急剧增大。,当UCE增至一定数值时(一般小于1V),输出特性曲线变得平坦,表明IC基本上不再随UCE而变化。,当IB一定时,从发射区扩散到基区的电子数大致一定。当UCE超过1V以后,这些电子的绝大部分被拉入集电区而形成集电极电流IC。之后即使UCE继续增大,集电极电流IC也不会再有明显的增加,具有恒流特性。,当IB增大时,相应IC也增大,输出特性曲线上移,且IC增大的幅度比对应IB大得多。这一点正是晶体管的电流放大作用。,从输出特性曲线可求出三极管的电流放大系数。,取任意再两条特性曲线上的平坦段,读出其基极电流之差;,再读出这两条曲线对应的集电极电流之

40、差IC=1.3mA;,IC,于是我们可得到三极管的电流放大倍数:=IC/IB=1.30.04=32.5,输出特性曲线上一般可分为三个区:,饱和区。当发射结和集电结均为正向偏置时,三极管处于饱和状态。此时集电极电流IC与基极电流IB之间不再成比例关系,IB的变化对IC的影响很小。,截止区。当基极电流IB等于0时,晶体管处于截止状态。实际上当发射结电压处在正向死区范围时,晶体管就已经截止,为让其可靠截止,常使UBE小于和等于零。,放 大 区,晶体管工作在放大状态时,发射结正偏,集电结反偏。在放大区,集电极电流与基极电流之间成倍的数量关系,即晶体管在放大区时具有电流放大作用。,总结三极管三个工作区的

41、特点,见表1.4.1.,表1.4.1晶体管在不同工作状态下的特点,4.双极型三极管的极限参数,(1)电流放大倍数,(2)极限参数,集电极最大允许电流ICM,反向击穿电压U(BR)CEO,UCC,U(BR)CEO,基极开路,指基极开路时集电极与发射极间的反向击穿电压。,使用中若超过此值,晶体管的集电结就会出现雪崩击穿。,值的大小反映了晶体管的电流放大能力。,ICICM时,晶体管不一定烧损,但值明显下降。,集电极最大允许功耗PCM,晶体管上的功耗超过PCM,管子将损坏。,安 全 区,【例】测得工作在放大电路中两个晶体管管脚对地的电位分别如下表所列。试判断管型、电极及所用材料。,晶体管1 晶体管2,

42、(1)晶体管1中,3脚电位最高,它是集电极C,且为NPN型管。1脚和2脚之间的电压为0.6V,可确定1脚是基极、2脚是发射极,且为硅管。,(2)晶体管2中,1脚电位最低,它是集电极C,且为PNP型管。2脚和3脚之间的电压为0.3V,可确定2脚是基极、3脚是发射极,且为锗管。,【例】在图中,给出了实测双极型三极管各个电极的对地电位,试判定这些三极管是硅管还是锗管?处于哪种工作状态?,(a)(b)(c)图1.4.6 例图,(1)在(a)图中,晶体管为NPN型。因为UBE=0.7V,发射结正偏,为硅管。又因为VBVC,集电结也正偏,故工作在饱和状态。,【例】在图中,给出了实测双极型三极管各个电极的对

43、地电位,试判定这些三极管是硅管还是锗管?处于哪种工作状态?,(a)(b)(c)图1.4.6 例图,(2)在(b)图中,晶体管为NPN型。因为UBE=0.3V,发射结正偏,为锗管。又因为VBVC,集电结反偏,故工作在放大状态。,【例】在图中,给出了实测双极型三极管各个电极的对地电位,试判定这些三极管是硅管还是锗管?处于哪种工作状态?,(a)(b)(c)图1.4.6 例图,(3)在(c)图中,晶体管为PNP型。因为UBE0.600.6V,发射结反偏(PNP型),又因为VBVC,集电结也反偏,故工作在截止状态。此时无法判别是硅管还是锗管。,本章学习结束,希望同学们对本章内容予以重视,因为这是电子技术中基础的基础。,Goodbye!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号