《绪论和常用半导体器.ppt》由会员分享,可在线阅读,更多相关《绪论和常用半导体器.ppt(84页珍藏版)》请在三一办公上搜索。
1、模拟电子技术基础,第一讲 绪论,一、电子技术的发展,二、模拟信号与模拟电路,三、“模拟电子技术基础”课程的特点,四、如何学习这门课程,五、课程的目的,一、电子技术的发展 很大程度上反映在元器件的发展上:,1947年 贝尔实验室制成第一只晶管1958年 集成电路1969年 大规模集成电路1975年 超大规模集成电路,第一片集成电路只有4个晶体管,而1997年一片集成电路中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年的速度增长,到2015或2020年达到饱和。,学习电子技术方面的课程需时刻关注电子技术的发展!,1.信号:是反映消息的物理量,信息需要借助于某些物理量(如声、光、电)的变化
2、来表示和传递。,电信号是指随时间而变化的电压u或电流i,记作u=f(t)或i=f(t)。,二、模拟信号与模拟电路,如温度、压力、流量,自然界的声音信号等等,因而信号是消息的表现形式。,2.电信号,由于非电的物理量很容易转换成电信号,而且电信号又容易传送和控制,因此电信号成为应用最为广泛的信号。,二、模拟信号与模拟电路,3.电子电路中信号的分类 模拟信号 对应任意时间值t 均有确定的函数值u或i,并且u或 i 的幅值是连续取值的,即在时间和数值上均具有连续性。,数字信号 在时间和数值上均具有离散性,u或 i 的变化在时间上不连续,总是发生在离散的瞬间;且它们的数值是一个最小量值的整数倍,当其值小
3、于最小量值时信号将毫无意义。,大多数物理量所转换成的信号均为模拟信号。,4.模拟电路 模拟电路:对模拟量进行处理的电路。最基本的处理是对信号的放大。放大:输入为小信号,有源元件控制电源使负载获 得大信号,并保持线性关系。有源元件:能够控制能量的元件。,二、模拟信号与模拟电路,二、模拟信号与模拟电路,5.“模拟电子技术基础”课程的内容 半导体器件。处理模拟信号的电子电路及其相关的基本功能:各 种放大电路、运算电路、滤波电路、信号发生电路、电源电路等等。模拟电路的分析方法。不同的电子电路在电子系统中的作用。,三、“模拟电子技术基础”课程的特点,1、工程性 实际工程需要证明其可行性。强调定性分析。,
4、实际工程在满足基本性能指标的前提下总是容许存 在一定的误差范围的。电子电路的定量分析称为“估算”。,近似分析要“合理”。抓主要矛盾和矛盾的主要方面。,电子电路归根结底是电路。估算不同的参数需采用不同的模型,可用电路的基本理论分析电子电路。,三、“模拟电子技术基础”课程的特点,2.实践性 实用的模拟电子电路几乎都需要进行调试才能达到预期的目标,因而要掌握以下方法:常用电子仪器的使用方法 电子电路的测试方法 故障的判断与排除方法 EDA软件的应用方法,四、如何学习这门课程,1.掌握基本概念、基本电路和基本分析方法 基本概念:概念是不变的,应用是灵活的,“万变不离其宗”。基本电路:构成的原则是不变的
5、,具体电路是多种多样的。基本分析方法:不同类型的电路有不同的性能指标和描述方法,因而有不同的分析方法。,2.学会辩证、全面地分析电子电路中的问题 根据需求,最适用的电路才是最好的电路。要研究利弊关系,通常“有一利必有一弊”。,3.注意电路中常用定理在电子电路中的应用,五、课程的目的,1.掌握基本概念、基本电路、基本分析方法和基本实验技能。2.具有能够继续深入学习和接受电子技术新发展的能力,以及将所学知识用于本专业的能力。,本课程通过对常用电子元器件、模拟电路及其系统的分析和设计的学习,使学生获得模拟电子技术方面的基础知识、基础理论和基本技能,为深入学习电子技术及其在专业中的应用打下基础。,建立
6、起系统的观念、工程的观念、科技进步的观念和创新意识。,第二讲 半导体基础知识,一、本征半导体,二、杂质半导体,三、PN结的形成及其单向导电性,四、PN结的电容效应,一、本征半导体,导电性介于导体与绝缘体之间的物质称为半导体。,无杂质,稳定的结构,本征半导体是纯净的晶体结构的半导体。,1、什么是半导体?什么是本征半导体?,导体铁、铝、铜等金属元素等低价元素,其最外层电子在外电场作用下很容易产生定向移动,形成电流。,绝缘体惰性气体、橡胶等,其原子的最外层电子受原子核的束缚力很强,只有在外电场强到一定程度时才可能导电。,半导体硅(Si)、锗(Ge),均为四价元素,它们原子的最外层电子受原子核的束缚力
7、介于导体与绝缘体之间。,1、本征半导体的结构,由于热运动,具有足够能量的价电子挣脱共价键的束缚而成为自由电子,自由电子的产生使共价键中留有一个空位置,称为空穴,自由电子与空穴相碰同时消失,称为复合。,共价键,一定温度下,自由电子与空穴对的浓度一定;温度升高,热运动加剧,挣脱共价键的电子增多,自由电子与空穴对的浓度加大。,在其它力的作用下,空穴吸引附近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。,本征半导体中存在数量相等的两种载流子,即自由电子和空穴。,运载电荷的粒子称为载流子。,2、本征半导体中的两种载流子,外加电场时,带负电的自由电子和
8、带正电的空穴均参与导电,且运动方向相反。由于载流子数目很少,故导电性很差。,为什么要将半导体变成导电性很差的本征半导体?,本征半导体中电流由两部分组成:1.自由电子移动产生的电流。2.空穴移动产生的电流。,温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。,二、杂质半导体 1.N型半导体,磷(P)施主原子,杂质半导体主要靠多数载流子导电。掺入杂质越多,多子浓度越高,导电性越强,实现导电性可控。,多数载流子,1.由施主原子提供的电子,浓度与施主原子相同。,2.本征半导体中成对产生的电子和空穴。,3.掺杂浓度远大于本征半导体中
9、载流子浓度,所以自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。,N 型半导体中的载流子是什么?,2.P型半导体,硼(B)受主原子,多数载流子,P型半导体主要靠空穴导电,空穴是多子,电子是少子。掺入杂质越多,空穴浓度越高,导电性越强,,在杂质半导体中,温度变化时,载流子的数目变化吗?少子与多子变化的数目相同吗?少子与多子浓度的变化相同吗?,杂质半导体的示意表示法:,杂质型半导体多子和少子的移动都能形成电流。但由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。,小结,1、半导体的导电能力介于导体与绝缘体之间。2、在一定温度下,本征半导体因
10、本征激发而产生自由电子和空穴对,故其有一定的导电能力。3、本征半导体的导电能力主要由温度决定;杂质半导体的导电能力主要由所掺杂质的浓度决定。4、P型半导体中空穴是多子,自由电子是少子。N型半导体中自由电子是多子,空穴是少子。5、半导体的导电能力与温度、光强、杂质浓度和材料性质有关。,三、PN结的形成及其单向导电性,物质因浓度差而产生的运动称为扩散运动。气体、液体、固体均有之。,P区空穴浓度远高于N区。,N区自由电子浓度远高于P区。,扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面N区的自由电子浓度降低,产生内电场,不利于扩散运动的继续进行。,PN结的形成,因电场作用所产生的运动称为漂移运动。
11、,参与扩散运动和漂移运动的载流子数目相同,达到动态平衡,就形成了PN结。,由于扩散运动使P区与N区的交界面缺少多数载流子,形成内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P区、自由电子从P区向N 区运动。,P型半导体,N型半导体,扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。,内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。,多子,多子,少子,少子,1.空间电荷区中没有载流子。,2.空间电荷区中内电场阻碍P中的空穴.N区 中的电子(都是多子)向对方运动(扩散运动)。,3.P 区中的电子和 N区中的空穴(都是少),数量有限,因此由它们形成的电流很小。,注意:,PN 结加上正向电
12、压、正向偏置的意思都是:P 区加正、N 区加负电压。,PN 结加上反向电压、反向偏置的意思都是:P区加负、N 区加正电压。,PN结的单向导电性,一、PN 结正向偏置,P,N,+,_,内电场被削弱,多子的扩散加强能够形成较大的扩散电流。,二、PN 结反向偏置,N,P,+,_,内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。,R,E,四、PN结的电流方程,温度的电压当量,五、PN结的电容效应,1.势垒电容,PN结外加电压变化时,空间电荷区的宽度将发生变化,有电荷的积累和释放的过程,与电容的充放电相同,其等效电容称为势垒电容Cb。,2.扩散电容,PN结外加的正
13、向电压变化时,在扩散路程中载流子的浓度及其梯度均有变化,也有电荷的积累和释放的过程,其等效电容称为扩散电容Cd。,结电容:,结电容不是常量!若PN结外加电压频率高到一定程度,则失去单向导电性!,第三讲 半导体二极管,一、二极管的组成,二、二极管的伏安特性及电流方程,三、二极管的等效电路,四、二极管的主要参数,五、稳压二极管,一、二极管的组成,将PN结封装,引出两个电极,就构成了二极管。,点接触型:结面积小,结电容小故结允许的电流小最高工作频率高,面接触型:结面积大,结电容大故结允许的电流大最高工作频率低,平面型:结面积可小、可大小的工作频率高大的结允许的电流大,二、二极管的伏安特性及电流方程
14、二极管的电流与其端电压的关系称为伏安特性,开启电压,反向饱和电流,击穿电压,温度的电压当量,从二极管的伏安特性可以反映出:1.单向导电性,2.伏安特性受温度影响,T()在电流不变情况下管压降u 反向饱和电流IS,U(BR)T()正向特性左移,反向特性下移,正向特性为指数曲线,反向特性为横轴的平行线,三、二极管的等效电路 1.将伏安特性折线化,理想二极管,近似分析中最常用,理想开关导通时 UD0截止时IS0,导通时UDUon截止时IS0,导通时i与u成线性关系,应根据不同情况选择不同的等效电路!,2.微变等效电路,Q越高,rd越小。,当二极管在静态基础上有一动态信号作用时,则可将二极管等效为一个
15、电阻,称为动态电阻,也就是微变等效电路。,ui=0时直流电源作用,小信号作用,静态电流,1.最大整流电流 IOM,二极管长期使用时,允许流过二极管的最大正向平均电流。,2.反向击穿电压UBR,二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压UWRM一般是UBR的一半。,四、二极管的主要参数,3.反向电流 IR,指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。,4.最高工作频率f
16、M:因PN结有电容效应,二极管:死区电压=0.5V,正向压降0.7V(硅二极管)理想二极管:死区电压=0,正向压降=0,二极管的应用举例:二极管半波整流,二极管限幅电路 利用二极管正向导通后其两端电压很小且基本不变的特性,可以构成各种限幅电路,使输出电压幅度限制在某一电压值以内。,五、稳压二极管,1.伏安特性,进入稳压区的最小电流,不至于损坏的最大电流,由一个PN结组成,反向击穿后在一定的电流范围内端电压基本不变,为稳定电压。,2.主要参数,稳定电压UZ、稳定电流IZ,最大功耗PZM IZM UZ,动态电阻rzUZ/IZ,负载电阻。,要求当输入电压由正常值发生20%波动时,负载电压基本不变。,
17、稳压二极管的应用举例,稳压管的技术参数:,解:令输入电压达到上限时,流过稳压管的电流为Izmax。,求:电阻R和输入电压 ui 的正常值。,方程1,令输入电压降到下限时,流过稳压管的电流为Izmin。,方程2,联立方程1、2,可解得:,讨论 判断电路中二极管的工作状态,求解输出电压。,判断二极管工作状态的方法?,第四讲 晶体三极管,一、晶体管的结构和符号,二、晶体管的放大原理,三、晶体管的共射输入、输出特性,四、温度对晶体管特性的影响,五、主要参数,基极,发射极,集电极,NPN型,PNP型,一、结构,一、三极管的结构和符号,发射结,集电结,二、类型,有PNP型和NPN型;硅管和锗管;大功率管和
18、小功率管;高频管和低频管。,基区:较薄,掺杂浓度低,集电区:面积较大,发射区:掺杂浓度较高,VBB,RB,VCc,进入P区的电子少部分与基区的空穴复合,形成电流IBN,多数扩散到集电结。,发射结正偏,发射区电子不断向基区扩散,形成发射极电流IEN。,二、晶体管电流放大原理,VBB,RB,VCC,集电结反偏,有少子形成的反向电流ICBO。,从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICn。,一、载流子传输过程 发射、复合、收集,复合形成电流IBN,IB=IBN+IEP-ICBO,二、各极电流关系,IE=IEN+IEP=IBN+ICN+IEP,IC=ICN+ICBO,电流分配
19、:IEIBIC IE扩散运动形成的电流 IB复合运动形成的电流 IC漂移运动形成的电流,ICE与IBE之比称为电流放大倍数,三、电流放大系数,直流电流放大系数,交流电流放大系数,NPN型三极管,PNP型三极管,IC,V,UCE,UBE,RB,IB,VCC,VBB,实验线路,三、晶体管的共射输入特性和输出特性,工作压降:硅管UBE0.60.7V,锗管UBE0.20.3V。,死区电压,硅管0.5V,锗管0.2V。,1、输入特性,为什么UCE增大曲线右移?,对于小功率晶体管,UCE大于1V的一条输入特性曲线可以取代UCE大于1V的所有输入特性曲线。,为什么像PN结的伏安特性?,为什么UCE增大到一定
20、值曲线右移就不明显了?,二、输出特性,IC(mA),此区域满足IC=IB称为线性区(放大区)。,当UCE大于一定的数值时,IC只与IB有关,IC=IB。,此区域中UCEUBE,集电结正偏,IBIC,UCE0.3V称为饱和区。,此区域中:IB=0,IC=ICEO,UBE 死区电压,称为截止区。,为什么uCE较小时iC随uCE变化很大?为什么进入放大状态曲线几乎是横轴的平行线?,饱和区,放大区,截止区,放大区:发射结正偏,集电结反偏。即:IC=IB,且 IC=IB,(2)饱和区:发射结正偏,集电结正偏。即:UCEUBE,IBIC,UCE0.3V,(3)截止区:UBE 死区电压,IB=0,IC=IC
21、EO 0,晶体管的三个工作区域,例:=50,VCC=12V,RB=70k,RC=6k 当VBB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,当VBB=-2V时:,IB=0,IC=0,IC最大饱和电流:,Q位于截止区,例:=50,USC=12V,RB=70k,RC=6k 当USB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,IC ICmax(=2mA),Q位于放大区。,VBB=2V时:,USB=5V时:,例:=50,USC=12V,RB=70k,RC=6k 当USB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,Q 位于饱和区,此时IC 和IB 已不是 倍的关系
22、。,四、温度对晶体管特性的影响,五、主要参数,前面的电路中,三极管的发射极是输入输出的公共点,称为共射接法,相应地还有共基、共集接法。,共射直流电流放大倍数:,工作于动态的三极管,真正的信号是叠加在直流上的交流信号。基极电流的变化量为IB,相应的集电极电流变化为IC,则交流电流放大倍数为:,1.电流放大倍数 和,例:UCE=6V时:IB=40 A,IC=1.5 mA;IB=60 A,IC=2.3 mA。,在以后的计算中,一般作近似处理:=,2.集-基极反向截止电流ICBO,ICBO是集电结反偏由少子的漂移形成的反向电流,受温度的变化影响。,B,E,C,N,N,P,ICBO进入N区,形成IBN。
23、,根据放大关系,由于IBN的存在,必有电流IBN。,集电结反偏有ICBO,3.集-射极反向截止电流ICEO,ICEO受温度影响很大,当温度上升时,ICEO增加很快,所以IC也相应增加。三极管的温度特性较差。,4.集电极最大电流ICM,集电极电流IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为ICM。,5.集-射极反向击穿电压,当集-射极之间的电压UCE超过一定的数值时,三极管就会被击穿。手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。,6.集电极最大允许功耗PCM,集电极电流IC 流过三极管,所发出的焦耳 热为:,PC=ICUCE,必定导致结温 上升
24、,所以PC 有限制。,PCPCM,ICUCE=PCM,安全工作区,第五讲 场效应管,一、场效应管(以N沟道为例),场效应管有三个极:源极(s)、栅极(g)、漏极(d),对应于晶体管的e、b、c;有三个工作区域:截止区、恒流区、可变电阻区,对应于晶体管的截止区、放大区、饱和区。,1.结型场效应管,导电沟道,源极,栅极,漏极,符号,结构示意图,栅-源电压对导电沟道宽度的控制作用,沟道最宽,uGS可以控制导电沟道的宽度。为什么g-s必须加负电压?,UGS(off),漏-源电压对漏极电流的影响,uGSUGS(off)且不变,VDD增大,iD增大。,预夹断,uGDUGS(off),VDD的增大,几乎全部
25、用来克服沟道的电阻,iD几乎不变,进入恒流区,iD几乎仅仅决定于uGS。,场效应管工作在恒流区的条件是什么?,uGDUGS(off),uGDUGS(off),夹断电压,漏极饱和电流,转移特性,场效应管工作在恒流区,因而uGSUGS(off)且uDSUGS(off)。,为什么必须用转移特性描述uGS对iD的控制作用?,g-s电压控制d-s的等效电阻,输出特性,预夹断轨迹,uGDUGS(off),可变电阻区,恒流区,iD几乎仅决定于uGS,击穿区,夹断区(截止区),夹断电压,IDSS,不同型号的管子UGS(off)、IDSS将不同。,低频跨导:,2.绝缘栅型场效应管,uGS增大,反型层(导电沟道)
26、将变厚变长。当反型层将两个N区相接时,形成导电沟道。,增强型管,SiO2绝缘层,衬底,耗尽层,空穴,高掺杂,反型层,大到一定值才开启,增强型MOS管uDS对iD的影响,用场效应管组成放大电路时应使之工作在恒流区。N沟道增强型MOS管工作在恒流区的条件是什么?,iD随uDS的增大而增大,可变电阻区,uGDUGS(th),预夹断,iD几乎仅仅受控于uGS,恒流区,刚出现夹断,uGS的增大几乎全部用来克服夹断区的电阻,耗尽型MOS管,耗尽型MOS管在 uGS0、uGS 0、uGS 0时均可导通,且与结型场效应管不同,由于SiO2绝缘层的存在,在uGS0时仍保持g-s间电阻非常大的特点。,加正离子,小到一定值才夹断,uGS=0时就存在导电沟道,MOS管的特性,1)增强型MOS管,2)耗尽型MOS管,开启电压,夹断电压,3.场效应管的分类工作在恒流区时g-s、d-s间的电压极性,uGS=0可工作在恒流区的场效应管有哪几种?uGS0才工作在恒流区的场效应管有哪几种?uGS0才工作在恒流区的场效应管有哪几种?,