邱关源电路第14章(已改).ppt

上传人:小飞机 文档编号:6611908 上传时间:2023-11-17 格式:PPT 页数:79 大小:2.04MB
返回 下载 相关 举报
邱关源电路第14章(已改).ppt_第1页
第1页 / 共79页
邱关源电路第14章(已改).ppt_第2页
第2页 / 共79页
邱关源电路第14章(已改).ppt_第3页
第3页 / 共79页
邱关源电路第14章(已改).ppt_第4页
第4页 / 共79页
邱关源电路第14章(已改).ppt_第5页
第5页 / 共79页
点击查看更多>>
资源描述

《邱关源电路第14章(已改).ppt》由会员分享,可在线阅读,更多相关《邱关源电路第14章(已改).ppt(79页珍藏版)》请在三一办公上搜索。

1、第14章 线性动态电路的 复频域分析,本章内容,重点,(1)拉普拉斯变换的基本原理和性质(2)掌握用拉普拉斯变换分析线性电 路的方法和步骤,(3)网络函数的概念(4)网络函数的极点和零点,返 回,拉氏变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时域的高阶微分方程变换为频域的代数方程以便求解。应用拉氏变换进行电路分析称为电路的复频域分析法,又称运算法。,14.1 拉普拉斯变换的定义,1.拉氏变换法,下 页,上 页,返 回,例,一些常用的变换,对数变换,乘法运算变换为加法运算,相量法,时域的正弦运算变换为复数运算,拉氏变换,

2、下 页,上 页,返 回,2.拉氏变换的定义,定义 0,)区间函数 f(t)的拉普拉斯变换式:,正变换,反变换,下 页,上 页,返 回,单边拉普拉斯变换,积分域,注意,今后讨论的均为0 拉氏变换。(意义:包含换路),0,0区间 f(t)=(t)时此项 0,象函数F(s)存在的条件:,下 页,上 页,返 回,如果存在有限常数M和 c 使函数 f(t)满足:,则f(t)的拉氏变换式F(s)总存在,因为总可以找到一个合适的s 值使上式积分为有限值。,下 页,上 页,象函数F(s)用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t),返 回,3.典型函数的拉氏变换,

3、(1)单位阶跃函数的象函数,下 页,上 页,返 回,(3)指数函数的象函数,(2)单位冲激函数的象函数,下 页,上 页,返 回,14.2 拉普拉斯变换的基本性质,1.线性性质,下 页,上 页,证,返 回,例1,解,例2,解,根据拉氏变换的线性性质,求函数与常数相乘及几个函数相加减的象函数时,可以先求各函数的象函数再进行相乘及加减计算。,下 页,上 页,结论,返 回,2.微分性质,下 页,上 页,证,若足够大,返 回,例,解,下 页,上 页,利用导数性质求下列函数的象函数,返 回,推广:,解,下 页,上 页,返 回,下 页,上 页,3.积分性质,证,应用微分性质,返 回,下 页,上 页,例,解,

4、返 回,4.延迟性质,下 页,上 页,证,返 回,例1,例2,求矩形脉冲的象函数,解,根据延迟性质,求三角波的象函数,解,下 页,上 页,返 回,求周期函数的拉氏变换,设f1(t)为一个周期的函数,例3,解,下 页,上 页,返 回,下 页,上 页,对于本题脉冲序列,5.拉普拉斯的卷积定理,返 回,下 页,上 页,证,返 回,14.3 拉普拉斯反变换的部分分式展开,用拉氏变换求解线性电路的时域响应时,需要把求得的响应的拉氏变换式反变换为时间函数。由象函数求原函数的方法:,(1)利用公式,(2)对简单形式的F(s)可以查拉氏变换表得原函数,下 页,上 页,(3)把F(s)分解为简单项的组合,部分分

5、式展开法,返 回,利用部分分式可将F(s)分解为:,下 页,上 页,象函数的一般形式,待定常数,讨论,返 回,待定常数的确定:,方法1,下 页,上 页,方法2,求极限的方法,令s=p1,返 回,下 页,上 页,例,解法1,返 回,解法2,下 页,上 页,原函数的一般形式,返 回,注意,若D(s)最高次项的系数b0不为1,将分子分母同除b0。,下 页,上 页,K1、K2也是一对共轭复数,注意,返 回,下 页,上 页,返 回,例,解,下 页,上 页,返 回,下 页,上 页,返 回,例,解,下 页,上 页,返 回,n=m 时将F(s)化成真分式和多项式之和,由F(s)求f(t)的步骤:,求真分式分母

6、的根,将真分式展开成部分分式,求各部分分式的系数,对每个部分分式和多项式逐项求拉氏反变换,下 页,上 页,小结,返 回,例,解,下 页,上 页,返 回,14.4 运算电路,基尔霍夫定律的时域表示:,1.基尔霍夫定律的运算形式,下 页,上 页,根据拉氏变换的线性性质得KCL、KVL的运算形式,对任一结点,对任一回路,返 回,u=Ri,2.电路元件的运算形式,电阻R的运算形式,取拉氏变换,电阻的运算电路,下 页,上 页,时域形式:,返 回,电感L的运算形式,取拉氏变换,由微分性质得,L的运算电路,下 页,上 页,时域形式:,返 回,电容C的运算形式,C的运算电路,下 页,上 页,时域形式:,取拉氏

7、变换,由积分性质得,返 回,耦合电感的运算形式,下 页,上 页,时域形式:,取拉氏变换,由微分性质得,互感运算阻抗,返 回,耦合电感的运算电路,下 页,上 页,返 回,受控源的运算形式,受控源的运算电路,下 页,上 页,时域形式:,取拉氏变换,返 回,3.RLC串联电路的运算形式,下 页,上 页,时域电路,拉氏变换,运算电路,运算阻抗,返 回,下 页,上 页,运算形式的欧姆定律,返 回,下 页,上 页,返 回,电压、电流用象函数形式;,元件用运算阻抗或运算导纳表示;,电容电压和电感电流初始值用附加电源表示。,下 页,上 页,电路的运算形式,小结,例,给出图示电路的运算电路模型。,解,t=0 时

8、开关打开,uc(0-)=25V iL(0-)=5A,时域电路,返 回,注意附加电源,下 页,上 页,t 0 运算电路,返 回,14.5 应用拉普拉斯变换法 分析线性电路,由换路前的电路计算uc(0-),iL(0-);,画运算电路模型,注意运算阻抗的表示和附加电源的作用;,应用前面各章介绍的各种计算方法求象函数;,反变换求原函数。,下 页,上 页,1.运算法的计算步骤,返 回,例1,(2)画运算电路,解,(1)计算初值,下 页,上 页,电路原处于稳态,t=0 时开关闭合,试用运算法求电流 i(t)。,返 回,(3)应用回路电流法,下 页,上 页,返 回,下 页,上 页,(4)反变换求原函数,返

9、回,下 页,上 页,例2,解,画运算电路,返 回,下 页,上 页,返 回,t=0时打开开关,求电感电流和电压。,例3,下 页,上 页,解,计算初值,画运算电路,返 回,下 页,上 页,注意,返 回,下 页,上 页,返 回,下 页,上 页,返 回,下 页,上 页,注意,由于拉氏变换中用0-初始条件,跃变情况自动包含在响应中,故不需先求 t=0+时的跃变值。,两个电感电压中的冲击部分大小相同而方向相反,故整个回路中无冲击电压。,满足磁链守恒。,返 回,下 页,上 页,返 回,14.6 网络函数的定义,1.网络函数H(s)的定义,线性线性时不变网络在单一电源激励下,其零状态响应的像函数与激励的像函数

10、之比定义为该电路的网络函数H(s)。,下 页,上 页,返 回,由于激励E(s)可以是电压源或电流源,响应R(s)可以是电压或电流,故 s 域网络函数可以是驱动点阻抗(导纳),转移阻抗(导纳),电压转移函数或电流转移函数。,下 页,上 页,注意,若E(s)=1,响应R(s)=H(s),即网络函数是该响应的像函数。网络函数的原函数是电路的冲激响应 h(t)。,2.网络函数的应用,由网络函数求取任意激励的零状态响应,返 回,例,下 页,上 页,解,画运算电路,返 回,下 页,上 页,返 回,例,下 页,上 页,解,画运算电路,返 回,下 页,上 页,3.应用卷积定理求电路响应,结论,可以通过求网络函

11、数H(s)与任意激励的象函数E(s)之积的拉氏反变换求得该网络在任何激励下的零状态响应。,返 回,K1=3,K2=-3,例,解,下 页,上 页,返 回,14.7 网络函数的极点和零点,1.极点和零点,下 页,上 页,当 s=zi 时,H(s)=0,称 zi 为零点,zi 为重根,称为重零点;,返 回,2.复平面(或s 平面),在复平面上把 H(s)的极点用 表示,零点用 o 表示。,零、极点分布图,下 页,上 页,zi,Pj 为复数,返 回,例,绘出其极零点图。,解,下 页,上 页,返 回,下 页,上 页,返 回,14.8 极点、零点与冲激响应,下 页,上 页,1.网络函数与冲击响应,冲击响应

12、,H(s)和冲激响应构成一对拉氏变换对。,结论,返 回,H0=-10,例,已知网络函数有两个极点为s=0、s=-1,一个单零点为s=1,且有,求H(s)和 h(t),解,由已知的零、极点得:,下 页,上 页,返 回,下 页,上 页,2.极点、零点与冲激响应,若网络函数为真分式且分母具有单根,则网络的冲激响应为:,讨论,当pi为负实根时,h(t)为衰减的指数函数,当pi为正实根时,h(t)为增长的指数函数;,极点位置不同,响应性质不同,极点反映网络响应动态过程中自由分量的变化规律。,注意,返 回,下 页,上 页,不稳定电路,稳定电路,返 回,下 页,上 页,当pi为共轭复数时,h(t)为衰减或增

13、长的正弦函数;,不稳定电路,稳定电路,返 回,下 页,上 页,当pi为虚根时,h(t)为纯正弦函数,当Pi为零时,h(t)为实数;,注意,一个实际的线性电路是稳定电路,其网络函数的极点一定位于左半平面。根据极点分布情况和激励变化规律可以预见时域响应的全部特点。,返 回,14.9 极点、零点与频率响应,令网络函数H(s)中复频率s=j,分析H(j)随变化的特性,根据网络函数零、极点的分布可以确定正弦输入时的频率响应。,对于某一固定的角频率,下 页,上 页,返 回,幅频特性,相频特性,下 页,上 页,例,定性分析RC串联电路以电压uC为输出时电路的频率响应。,解,返 回,一个极点,下 页,上 页,用线段M1表示,返 回,幅频特性,相频特性,下 页,上 页,返 回,若以电压uR为输出时电路的频率响应为:,上 页,返 回,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号