Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx

上传人:李司机 文档编号:6789942 上传时间:2024-02-21 格式:DOCX 页数:68 大小:822.32KB
返回 下载 相关 举报
Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx_第1页
第1页 / 共68页
Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx_第2页
第2页 / 共68页
Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx_第3页
第3页 / 共68页
Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx_第4页
第4页 / 共68页
Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx_第5页
第5页 / 共68页
点击查看更多>>
资源描述

《Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx》由会员分享,可在线阅读,更多相关《Title Geometric Algebra New Foundations, New Insights标题的几何代数的新基础新的见解.docx(68页珍藏版)》请在三一办公上搜索。

1、TheworkofAmbjornNaevewithinthefieldofMathematicsEducationalReformAmbjornNaeveMarch2001(I)CIDCentreforUserOrientedITDesignTableofContentTableofContent21. ProblemStatement42. Background52.1. TheCVAPresearchgroup62.2. TheGeometricToolboxproject62.3. PrqjectiveDrawingBoard:dynamicgeometricexplorations72

2、.4. TheCentreforuser-orientedITDesign(CID)92.5. TheGardenofKnowledgeproject102.6. SomeILEprojectsatCID113. ConceptBrowsing123.1. Conceptualtopologies123.1.1. Traditionalconceptualtopologies123.1.2. Dynamicconceptualtopologies-hyperlinkedinformationsystems123.1.3. Problemswiththeabovementionedconcept

3、ualtopologies133.2. BasicDesignPrinciplesforConceptBrowsers143.3. Conzilla144. KnowledgeManifolds164.1. CreatingMultiplyNarratedKnowledgeComponents164.2. ComposingKnowledgeComponentsintoLearningModules175. MathematicalILEworkatCID195.1. TheVirtualMathematicalExploratorium195.1.1. Introduction195.1.2

4、. Surfingthecontext215.1.3. Displayingmeta-datadescriptions235.1.4. Viewingthelistofcontentcomponentsthroughdifferentfilters245.1.5. Viewingtheactualcontentofacomponent275.1.6. Displayingthedecriptionofthecontentcomponents285.1.7. DesigngoalsandeducationalapplicationsoftheVME295.2. LiveGraphics3D-ma

5、kingMathematicagraphicscomealive315.3. MathematicalComponentArchives325.3.1. GeneralgoalsoftheMCAproject335.4. CyberMath336. TheSwedishLearningLab376.1. Excerptfromtheproposalsummary376.2. NewMeetingPlacesforLearning386.2.1. Summary386.2.2. Projectoverview387. Archives,Portfoliosand3DEnvironments(AP

6、E)397.1. APE:TrackA:ContentandContextofMathematicsinEngineeringEducation397.1.1. Goals397.1.2. ActivityplanforstudywithintheMScprograminITatKTH397.1.3. ExcerptsfromtheProgressReportyear2000407.1.4. Currentstateoftheprojectcomparedtotheactivityplan417.1.5. Implementationofinteractivecontentandappropr

7、iatetools437.1.6. Educationalevaluation/assessmentresults(Study1)437.2. APE:TrackC:3DCommunicationandVisualizationEnvironmentsforLearning(CVEL)447.2.1. GoalsoftheCVEL-Project447.2.2. Activityplanyear2000(Workpackages)447.2.3. ExcerptsfromtheProgressReportyear20(X)-ResultsatDIS467.2.4. Excerptsfromth

8、eProgressReportyear2000-ResultsatCID468. PlannedLearningLabProjects:PersonalizedAccesstoDistributedLearningResources528.1. ProposalSummary528.2. Module:InfrastructureandIntelligentServices538.2.1. Contributors538.2.3. ProblemDescription,ResearchAspects538.2.4. ResearchGoalsZDeliverables538.2.5. Inte

9、ractionwithothermodules558.2.6. CIDteam558.3. Module:Personalizedaccesstoeducationalmedia558.3.1. Contributors558.3.2. ResearchIssues569. GeometricAlgebraandMathEducationalReform589.3. DavidHestenes589.4. Modelingprogramexcellenceaward589.4.1. Exemplary&promisingeducationaltechnologyprograms(2000)59

10、9.5. SIGGRAPH-2000:GeometricAlgebraCourse609.5.1. CourseTitle:GeometricAlgebra:NewFoundations,NewInsights609.6. MathXplor-aVirtualMathematicsExploraioriumgroup629.7. DavidHestenesatKTH659.8. EducationalReformbasedonSoftwaredevelopment659.8.1. TheSimCalcProject659.8.2. OverallStrategy6710. CILTandEdG

11、rid6710.3. TheCILT2000conferenceandtheM&Vworkshop6711. References6911.3. SelectedpublicationsbyAmbjomNaeve6911.4. SupervisoryActivitiesbyAmbjornNaeve701. ProblemStatementDuringthelasttwodecades,thespectacularadvancementswithinthefieldofinformationtechnologyhavecreatedpowerfulgraphicalworkstationswit

12、hpossibilitiestostudymathematicsinnewandexitingways.Todayitisevidenthowcomputerbasedanimationsandsimulationshaveaffectedmostfieldsthatinvolvemathematicalapplicationsinsomeway.Visualizationofstructuralrelationshipsanddynamicprocesseshasemergedasafieldofitsown,withapplicationswithinscienceandtechnolog

13、yaswellaswithineconomicsandsocialsciences.Itisthereforesomethingofaparadoxthatoneofthefieldsthatseemstohavebeenleastaffectedbythisdevelopmentisthefieldofmathematicsitself.Thisisespeciallytrueofmathematicseducation,i.e.mathematicaldidactics.Atouruniversitieswearestillcarryingonthetraditionalwaysofmat

14、hematicsteaching-executingourcoursesintheoverallspiritofuthesameprocedureaslastyear11!Amongmathematicsteachers,computersareoftenconsideredathreateningelement,thatfocusesthestudentsattentioninthewrongdirection.Thisattitudeiseasilyreinforcedbythemultitudeoflow-qualityeducationalsoftwarethatsupportsmat

15、hematicallytrivialpursuitsinonewayoranother.Infact,thisdeplorablestateofaffairshascausedtheissueofcomputer-supportedorcomputer-disturbedmathematicstosurfaceasamajordiscussionthemeamongmathematicaleducationalists. See the report titled Datorstddd eller (Iatorstord mutenutikundervisning ?, Hogskolever

16、kets Skriftserie I999:4S, ISSN 1400-9498.Ofcourse,therearemanyexceptionsfromthisbasicpatternintheformofindividualteachersthatinvolvethemselvesintryingtomakeintelligentuseofthepossibilitiesofpedagogicalrenewalthatareofferedbytheemergingICTtechnology.Butaslongastheyactalone,asisolatedenthusiastsemerge

17、dinanoceanofskeptics,theireffortsandexperienceswillremainhiddenandhencebedifficulttoharnessandreuseinasystematicway.2. BackgroundDuringmorethan3decadesAmbjornNaevehasbeeninvolvedinmathematicseducationatKTH-bothasateacherintheMathematicsdepartment,andasaneducationalreformist.Overthepast15years,Naeveh

18、asinitiatedandcoordinatedanumberofprojectsaimingtomakeuseofcomputersinordertoincreasethecomprehensibilityandaccessibilityofmathematicalconceptsandstructuresatalllevelsoftheeducationalsystem.Theseprojectshaveallbeenbasedonhisfirmconvictionthatincreasingthestudents1intuitiveunderstandingofmathematical

19、structures-bothattheuniversitylevelandatthemoreelementaryschoollevel-isakeyelementinmotivatingthemtopursuemathematicalstudiesingeneral.ThisworkoriginatedasapartofNaeve,sresearchinthefieldofgeometricmodelingwithintheComputerVisionandActivePerception(CVAP)researchgroupatNADA.Duringthelast4yearsithasbe

20、enapartofNaeve,sresearchworkinthefieldofinteractivelearningenvironmentsattheCentreforuser-orientedITDesign(CID)atNADA.Theworkhasresultedinanumberofsoftwaretoolsfortheinteractiveexplorationofmathematics12,severalofwhichhaveattractedbothnationalandinternationalattention.Someofthemorerecentlydevelopedo

21、nesarePDB(ProjectiveDrawingBoard),COnZ川a(:Cid.nada.kth.se/il/ConZilla/default.html)andCyberMath(:nada.kth.se/qustavt/cvbermath/).TheywerepresentedlastyearattheSiggraphconferenceinNewOrleans-probablythemostprestigiouscomputerconferenceintheworld.CyberMathhasalsobeenacceptedforpresentationatICDE-2001(

22、the20:thWorldConferenceonOpenLearningandDistanceEducation)inDusseldorfinApril(:icde.org).ConzillaandCyberMathhavebeenpartlydevelopedwithintheAPE(Archives,Portfolios,Environments)projectincooperationbetweenCIDandtheSwedishLearningLab(:/IeaminaIab.kth.se/library/Dresentations).Theprojectshaveinvolveds

23、ystemsdesignandprogrammingbyNaevehimself,buthehasalsoheadedanumberofdevelopmentteamsinvolving3rdand4thyearstudentsattheComputerSciencedepartment(NADA)aswellasprojectsforthemastersthesis19,21,23andforthedoctoralthesis20.Thecommonthemeofalltheseprojectshasbeenthepresentationofmathematicalideasandstruc

24、turesinawaythatfacilitatesanincreasedunderstandingofthembymakingitpossibletoexploretheminteractivelythroughvariousformsofexperimentationandvisualization.Initially,theprojectswerefocusedongeometry-whichresultedinsoftwareprogramslikeMapCon(1986),MacWaIIpaper(1987)andMacDrawboard(1988),butprogramslikeH

25、yperFIow(1987)andMapAnaIyze(1989)whichdealtwiththegeneralconceptoffunctionandPrimeTime(1992),whichdealtwithelementaryarithmeticwerealsocreated.See12forfurtherdetailsonthesesoftwaretools.Duringrecentyearstheworkhasbecomedirectedtowardsthecreationofcomputer-supportedmathematicstoolsthatcanfunctiontoge

26、therinamodularizedanddistributedinteractivelearningenvironment.Inthisrespect,thefollowingprojectsdeservetobementioned: GeometricToolbox(researchworkatCVAP,1986-1994). TheGardenofKnowledge(interdisciplinaryprojectatCIDsince1996). ProjectiveDrawingBoard(doctoralworkatCVAP,1995-1999). Conceptualbrowsin

27、g(startedasamastersthesisworkatCID1998-1999,presentlyadoctoralthesisprojectatCID).Below,someoftheseprojectswillbedescribedbriefly.Foramoredetaileddescriptionthereaderisreferredto12.1.1. TheCVAPresearchgroupTheComputerVisionandActivePerception(CVAP)groupisaninternationallyrenownedresearchgroupatNADAw

28、ithinthefieldofComputerVisionandRobotics,whichhasbeendevelopedduringthepast15yearsundertheleadershipofProf.Jan-OlofEklundh.TheCVAPgrouphasastrongfoundationinmathematicsandcomputerscience.Ithasacquiredaninternationalreputationforitsabilitytotransformmathematicalideasintotechnicallyviableapplications,

29、whichhasmadethegroupabletoattractalargenumberofgiftedstudents.Overtheyears,severalofthesocalledexcellencepositionsfordoctoralstudentsatKTHhavebeenheldbyresearchstudentsatCVAP.IncombinationwiththeinspiringleadershipofProf.Eklundh,thishasmadepossiblesomemathematicalsoftwaredesignofthehighestinternatio

30、nalqualitylikee.g.GeometricToolbox(Naeve&Appelgren1986-94)andProjectiveDrawingBoard(Naeve&Winroth1995-1999).1.2. TheGeometricToolboxprojectThetypicalgeometricmodelingsituationoftodayischaracterizedby-andquitefrequentlyplaguedby-anumberoftoolswithahighdegreeofspecialstreamlinedperformance.Thishasalmo

31、stinvariablyledtoadhoc1choicesandsimplificationsthathavecreatedmathematicalinconsistenciesandtherebyrenderedalmostallofthetoolsincompatiblewiththeothers-preventingthemtoworktogetherinacoherentfashionagainstthesame,allinclusiveuniversalgeometricbackground.AtCVAP,AmbjornNaeveandJohanAppelgrenhavedevel

32、opedasoftwarepackagecalledReflections19,whichisasystemfortheinteractivestudyofsurfaceshape.ThissystemwasusedasanexperimentalplatformforthetheorydevelopedbyNaeveinhisdissertation7.ReflectionsispartofasoftwaresystemcalledSurface-Geometry,whichisamathematicallybased,computationallyefficientgeometricrep

33、resentationschemefor3Dsurface12.TheSurface-GeometrysystemisitselfpartofalargergeometricmodelingprojectwithinCVAP,calledGeometricToolbox,whichisaimedatproducinganinteractivemathematics-friendlygeometricexperimentationenvironment-akindofgeometricobjectlibrary-consistingofacollectionofcompatibleandreus

34、ablegeometricstructuresandalgorithmiccomponents.Usingthiskindofgeometrictoolbox,differentkindsofgeometricexperiments-putergraphics,computationalgeometryandcomputervision-canbeeasilywiredtogetherandalltherelevantparameterscanbemanipulatedinamathematicallycontrolledandinteractivelyobservableway.Thedes

35、iretoperformsuchexperiments-whereoneiscombiningheavycomputingwithimmediateviewingoftheresult-isgrowingrapidlywithinthecommunityofcomputationalgeometry-asthepowerofsuchtechniquesindevelopingandtestingdifferentalgorithmsisbecomingmoreandmoreapparent.Thisisduetoacombinationoftheenormousincreaseofcomput

36、ationalpowerthathasmanifesteditselfinhardwarecomponentsoverthelastfewyearsandtheadvancedgraphicsworkstationcapabilitiesthatareonthevergeofsettlingdownoneverybodysdesktop.Ithasfinallybecomefeasibletosimulatealargeclassofcomplicatedgeometricalsituationsandobtaininformationonlinewithdirectrelevancetoth

37、eunderstandingoftheunderlyingproblem.Thepossibilitytointeractivelyexpandonesintuitionaboutaproblem-byperformingmathematicallycontrolledexperimentsinthisway-isaverypowerfultechniquethatisboundtohaveaprofoundeffectontheentireresearchmethodologyofthefuture.ForadetaileddescriptionoftheresultsoftheGeomet

38、ricToolboxproject,thereaderisreferredto6,7,12and19.1.3. ProjectiveDrawingBoard:dynamicgeometricexplorationsPDB(ProjectiveDrawingBoard)isaprogramthatsupportsinteractiveexplorationofgeometricconstructionsintheprojectiveplane PDB has been created by Harald Winroth as a part of his doctoral project 20 a

39、t CVAP under the supen,ision of Ambjorn Naeve. The program is based on an earlier prototype called MacDrawboard, which was developed by Ambjdm Naeve and a group of Computer Science students in 1998 12.Theprojectiveplaneisanenlargementoftheordinary(Euclidean)planewhichisconstructedbyintroducingnewele

40、ments(asetofidealpointsandoneidealline)insuchawaythattwoparallellinesintersectinanidealpointandalltheidealpointslieontheidealline.Intheprojectiveplane,twolinesalwaysintersectin(=lieon)onepoint,andofcoursetwopointsstilllieon(=intersectin)oneline.Hencethestructuralrelationshipsbetweenpointsandlinesbec

41、omemuchsimpler,sincetheyarenowdevoidoftheclassicaleuclideanexceptionscausedbyparallellines,thatcanleadtocomplicatedcombinatorialproblems.Intheprojectiveplane,pointsandlinesareinfactrepresentedbythesamealgebra,anditisonlytheinterpretationofthealgebraicformulasthatdeterminetheirgraphicalappearence(asa

42、pointorasaline).Everygeometricconstructionhasahistory,whichreflectstheorderinwhichtheconstructionhasbeenbuiltup.Aconstructionprocesscanberegardedasaninterplaybetweenrandomchoice(e.g.choosetwopointsPandQ)andcanonicalnecessity(e.g.drawthelinePO).Ageometricobjectcanpartakeofboththeseelements(e.g.choose

43、alineonP).Toanygeometricobjectwecanthereforeassociateasetofchildrenandasetofparentsinanaturalway.Intheexampleabove,thelinePOisachildofboththepointPandthepointQ,andbothofthesepointsareparentsofthelinePO.OneofthebasicideasinPDBistokeeptrackofthehistoryofageometricconstructionandmakeitpossibletochangei

44、tinaconsistentway.Thismeansthatachangethataffectsanobjectacertainstageintheconstructionshouldpropagateforwardsothatitaffectsallthechildrenofthisobject.Inordertoupdatetheconstructioninthisway,PDBhasaccesstoanentirehierarchyofcoordinatesystemsthatkeeptrackofthepositionofeachobjectrelativetoitsparents.

45、PresentlyPDBworksonlywiththeelementsofclassicalprojectivegeometry,i.e.points,linesandconics.However,thesystemisdesignedinaccordancewiththeobject-orientedparadigmanditiswellmodularizedtomakeiteasytoenlargeandexpandinvariousways.PDBpresentsbothagraphicandalogicviewofageometricconstruction.Moreover,the

46、programallowsyounotonlytochangethepositionofanobject,withcoherentupdatesoftheeffectsonitschildren,buttoactuallychangethelogicoftheconstructionbydynamicallychangingtheconstraintsofanobject.Forexample,apointwhichisachildofaconiccanbetornofftheconicandeitherbeturnedintoafreepoint,orbesubjectedtosomeoth

47、erconstraintande.g.becomeapointonasomeline.Thisallowsyoutoplaywithaconstructionandexperiencepreciselyunderwhatconditionscertainthingshappen,i.e.youcaninteractivelyexploretheif-and-only-ifconditionsofageometrictheorem.GraphicviewLogicviewFig.1:Desargue,stheorem.Thecornersoftwotriangles(abcanda,b,c,)a

48、reperspectivefromapoint(green)ifandonlyifthecorrespondinglines(ab&a,b,be&b,c,andca&c,a,)ofthetrianglesareperspectivefromaline(black),i.e.thepointsp,q,rarecollinear.ToconveyanideaofthedynamicpossibilitiesofPDB,aQuickTimemoviethatillustratesthedynamicexplorationofDesargue1Stheoremisavailableat:nada.kth.se/amb/SnapzPro/Desargues.mov.1.4. TheCentreforuser-orientedITDesign(CID)CID,whichwasstartedin1995,isacompetencecenteratthedepartmentofNumericalAna

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号