《TheSecretsofQuantumPhysics1of2《量子力学揭秘(2014)(上)》完整中英文对照剧本.docx》由会员分享,可在线阅读,更多相关《TheSecretsofQuantumPhysics1of2《量子力学揭秘(2014)(上)》完整中英文对照剧本.docx(41页珍藏版)》请在三一办公上搜索。
1、量子力学揭秘爱因斯坦的噩梦吉米卡利里教授萨里大学马克斯普朗克”量子就是一个纯粹的假设而我并没有考虑太多”阿尔伯特爱因斯坦”没有理性的实在解释能准许量子力学的存在”格雷姆法米罗博士科技史学家尼尔斯玻尔”我们称之为真实的事物并非由真实之物所构成”格雷姆法米罗博士科技史学家约翰贝尔”玻尔的理论前后矛盾,不甚明晰,任意晦涩但却正确无疑“”爱因斯坦的理论始终如一,简单明了,实事求是但却大谬不然”阿尔伯特爱因斯坦”整整五十年的自觉思考没有使我更接近于解答这个问题-光量子是什么?”“每一个人都认为他们自己知道,但他大错特错”在这纷繁复杂的生活之中Beneaththecomplexitiesofeveryda
2、ylife,世间的法则似乎尤为简单therulesofouruniverseseemreassuringlysimple.坚固的拱桥支撑着我的体重Thissolidbridgesupportsmyweight.桥下潺潺的溪水总会沿地势向山下流淌Thewaterflowingunderneathalwaysgoesdownhill而当我抛出这块石头andwhenIthrowthisstone.它总会沿着可预测的轨迹在空中滑翔.Italwaysfliesthroughtheairfollowingapredictablepath.但当科学家们Butasscientistspeereddeep深入探
3、究物质的细微构成时intothetinybuildingblocksofmatter.所有的这些都荡然无存.Allsuchcertaintyvanished.他们发现了量子力学中的别样世界Theyfoundtheweirdworldofquantummechanics.深入观测我们周围的一切Deepdowninsideeverythingweseearoundus,我们就会发现一个与众不同的世界Wefoundauniversecompletelyunlikeourown.也正印证r一位量子力学的奠基者所说Toparaphraseoneofthefoundersofquantummechanic
4、s,我们所称之为真实的事物everythingwecallrealismadeupofthings它们的构成却并非真实存在thatcannotbethemselvesregardedasreal.大约100年前一些举世闻名的科学家Around100yearsago,someoftheworldsgreatestscientists开始了他们量子力学的探究之旅beganajourneydowntherabbithole力图阐释这奇妙的世界intothestrangeandthebizarre.他们发现在这个微观世界Theyfoundthatintherealmoftheverysmall,事物可
5、同时身处两地thingscouldbeintwoplacesatonce.他们命运则由概论所掌控.Thattheirfatesaredictatedbychance.而实在本身则挑战着一切认知常识.andthatrealityitselfdefiesallcommonsense.重要的是我们对干这个世界Andatstake,thateverythingwethought所感知的一切都可能被证明是错误的Weknewabouttheworldmightturnouttobecompletelywrong.使我们陷入这疯狂般科学之路的故事Thestoryofourdescentintoscienti
6、ficmadness则始于一件意想不到的东西beginswiththemostunlikelyobject.柏林l♥8♥9♥0年Berlin,l♥8♥9♥0.德国是一个新兴国家Germanyisanewcountry,于近代才统一并马不停蹄地推进着工业化进程recentlyunifiedandhungrytoindustrialise.在这个刚统一伊始的德国Inthisnewly-unifiedGermany,一大批工程公♥司♥如雨后春笋般成立起来anumberofnewengine
7、eringcompanieswerefounded.他们斥资数百万马克来购买♥♥爱迪生于欧洲的TheydspentmillionsbuyingtheEuropeanpatent最新发明的专利权电灯泡forEdisonsnewinvention,thelightbulb.电灯泡是现代科技的缩影Thelightbulbwastheepitomeofmoderntechnology,人类社会进步的标志性象征agreatoptimisticsymbolofprogress.这些工程公♥司♥迅速意识到Engineeringcompaniesquic
8、klyrealisedtherewerefortunes为新德意志帝国安装路灯将带来巨大的利润tobemadebuildingstreetlightsforthenewGermanEmpire.但他们没有意识到的是这也为一场科技革命Butwhattheydidntrealisewasthattheywouldalsounleash敞开了大门ascientificrevolution.说来也奇怪Strangelyenough,这微不足道的电灯泡却为整个科学界thishumbleobjectisresponsibleforthebirth最具分量的理论的诞生做出了贡献ofthemostimport
9、anttheoryinthewholeofscience-量子力学我毕其一生所研究的理论quantummechanics,atheorythatvespentmylifestudying.而这是因为倒回到19世纪Andthatsbecause,backin1900,灯泡的发明也随之带来一个奇怪的问题thelightbulbpresentedaratherstrangeproblem.工程师们都知道如果你用电来加热灯丝Engineersknewthatifyouheatedthefilamentwithelectricity,它就会发光itglowed.而物理学家们在研究它时Thephysics
10、thatunderpinnedthis,对其发光的原理一无所知though,wascompletelyunknown.尤其涉及到灯芯的温度Butsomethingasbasicastherelationship与其产生光的颜色之间的关系betweenthetemperatureofthefilament这个基础的问题时andthecolouroflightitproduces人们仍无法对其解答wasstillacompletemystery.显然这个未解之谜亟待破解Amysterytheywereobviouslykeentosolve.在新德国政♥府♥的帮助之下A
11、nd,withthehelpofthenewGermanstate,科学家们在他们的竞争对手破解之前抢先了一步theysawhowtostealamarchontheircompetitors.1887年德国政♥府♥斥资数百万马克In1887,theGermangovernmentinvestedmillions在柏林投资建立了全新科研机构inanewtechnicalresearchinstitutehereinBerlin,德国物理技术研究院简称PTRThePhysikalisch-TechnischeReichsanstalt,orPTR.之后在1900年他们
12、招募了一位Then,in1900theyenlistedabright精明强干的科学家来帮助带领这里的研究ifsomewhatstraight-lacedscientisttohelpworkhere.他的名字就是马克斯普朗克HisnamewasMaxPlanck.普朗克选了个看似简单的问题Plancktookonadeceptivelysimpleproblem-为什么光的颜色会随着灯芯温度的升高而改变whythecolourofthelightchangesasthefilamentgetshotter.为了能更直观的体会到普朗克所面临的难题Togetasenseofthepuzzlefa
13、cingPlanck,我将骑一下这辆用老式发电机mgoingtoridethisbicyclewithanold-fashionedlamp来给老式电灯供电的自行车poweredbyanold-fashioneddynamo.很显然我骑得越快灯泡越亮,ObviouslythefasterIgo,thebrighterthelight.我蹬得越多发电机产生的电量也就越多ThemoreIpedal,themoreelectricitythedynamoproduces,灯芯的温度越高从而灯泡就越亮thehotterthefilamentinthelampandthebrighterthelight
14、.但是灯泡的灯光并不只是变得更亮Butthelightthebulbmakesisntjustgettingbrighter,它的颜色同样也在改变itschangingcolour,too.当我加速时其颜色会从红变成橙再变为黄AsIspeedup,thecolourshiftsfromredtoorangetoyellow.现在我要加速了Right,nowmgoingtoreallybeltit.此时的灯芯变得更烫Nowthebulbsfilamentisgettingevenhotter,但尽管灯光变得更为明亮butalthoughitcertainlygetsbrighter.而其颜色似乎
15、却保持不变始终是黄白色.Thecolourseemstostaythesame-yellow-white.为什么光不会再变蓝呢Whydoesntthelightgetanybluer?为了探究这个问题普朗克和他的同事建造了一个Toinvestigate,Planckandhiscolleaguesbuiltthis,黑体辐射器ablack-bodyradiator.这是一个特殊的管状装置它可以加热到极其精确的温度It,saspecialtubetheycouldheattoaveryprecisetemperature并用来测量光所产生的andawaytomeasurethecolourorf
16、requency颜色和频率ofthelightitproduced.现在过了100多年后德国物理技术研究院仍然在进行着Nowadays,over100yearslater,thePTRstilldoexactly同样的测量只不过更精确罢了thiskindofmeasurement,justmuchmoreaccurately.这里面的温度有841摄氏度Thetemperatureinsidehereis841degreescentigrade.我可以感觉到从里面传递出的热量Icanfeeltheheatcomingoffandit,sglowing并且它还散发着迷人的橘红色withalovel
17、yorangey-redcolour.这和我慢慢骑车时车灯上的颜色It,saboutthesamecolourasmybikelight一模一样whenmcyclingslowly.但我仍想要再看看温度更高时的状况ButIwanttoseesomethinghotterstill.这里有着将近2000摄氏度的高温Thetemperatureinsidehereisabout2,000degreescentigrade.此时发射出来的是更加明亮的白色光芒.Anditsglowingwithamuchbrighter,whiter-colouredlight.要产生这种颜色和强度的光Toprodu
18、celightofthisintensityandcolour需要大约40千瓦的电力requiresapowerofabout40kilowatts.这就相当于Now,thatsequivalentto在自行车上以每秒400米的速度骑行about400mesonabikecyclingveryfast,或者环法自行车赛全程所耗费的能量orthecombinedoutputoftheentireTourdeFrance.尽管灯光更加白亮呈现红白色Althoughthelightiswhiter,itsred-white-但仍几乎看不到蓝色theresverylittleblue.为何蓝色的产生要
19、比红色更难Whyisbluesomuchhardertomakethanred?在光谱的更远端超出蓝色之后Andfurtherupthespectrum,beyondblue,就是所谓的紫外线其产生难度可想而知theso-calledultraviolet,ishardlyproducedatall-即便观察如太阳那般火热的物体evenwhenwelookatthingsashotasthesun.甚至对于太阳而言其温度达到5500摄氏度Eventhesun,atatemperature5,500degreescentigrade,所产生光的大部分都为可见光producesmostlywhit
20、evisiblelight而考虑到其炽热的温度紫外光却微乎其微andmakesremarkablylittleultravioletlight,givenhowhotitis.到底是为什么Whyisthis?为何紫外光的产生如此之难Whyisultravioletlightsohardtomake?对于这种经典理论所遇到的困境Thisremarkablefailureofcommonsensesoperplexedscientists19世纪末的科学家们给它起了一个极具戏剧性的名称ofthelate19thcenturythattheygaveitaverydramaticname.他们把其称
21、之为紫外灾难Theycalledittheultravioletcatastrophe.在攻克难题上普朗克则迈出了至关重要的第一步Plancktookacrucialfirststeptosolvingthis.他发现了精确的数学表达Hefoundtheprecisemathematicallink将光的颜色频率和其能量联♥系♥起来betweenthecolouroflight,itsfrequencyanditsenergy.但他却不明白其关联有何意义Buthedidntunderstandtheconnection.然而另一个令人费解的现象However,itw
22、asanotherweirdanomaly让本已不安的时局又蒙上一层阴影thatwouldreallyputthecatamongstthepigeons.在19世纪末科学家们纷纷研究着Inthelate19thcentury,scientistswerestudying最新发现的无线电波thethennewly-discoveredradiowavesand以及其传播的方式howtheyweretransmitted.为了便于研究他们建造了许多实验设备Andtodothat,theywerebuildingexperimentalrigs就比如类似这台大体上说就是旋转这个圆盘verysimi
23、lartothisone.Basically,byspinningthisdisc,从而能产生巨大的电压进而导致迸发出的火花theycouldgeneratehugevoltagesthatcausedsparks穿过两个金属球之间的缝隙tojumpacrossthegapbetweenthetwometalspheres.但在此过程中But,indoingso,他们发现在光的作用下会有意想不到的结果theydiscoveredsomethingveryunexpectedtodowithlight.他们发现Theyfoundthat,用强光源照射这些球体byshiningapowerfull
24、ightsourceonthespheres,可以使火花更容易穿越缝隙theycouldmakethesparksjumpacrossmoreeasily.他们推测光与电之间存在着Thissuggestedamysteriousandunexplainedconnection神秘而难以解释的联♥系♥betweenlightandelectricity.为了便于理解刚才的现象科学家们通常用此来演示Tounderstandwhatwashappening,scientistsusedthis.这被称之为金箔验电器It,scalledagoldleafelectrosco
25、pe.这算是那台火花隙仪器Itsbasicallyamoresensitiveversion效果更明显的版本ofthesparkgapapparatus.首先我需要为其充一下电Now,firstofall,Ihavetochargeitup.我这样做是为了施加额外电TWhatmdoingisaddinganexcessofelectrons迫使两片金箔分开thatarepushingthetwogoldleavesapart.我先用红灯实验Now,firstItakeredlight照射其金属片表面andshineitonthemetalsurface显然毫无变化andnothinghappe
26、ns.尽管我增加了光强度EvenifIincreasedthebrightnessofthelight,两片金箔仍不受影响stillthegoldleavesarentaffected.那我再试试这富含紫外线的蓝色灯Nowlltrythisspecialbluelight,richinultraviolet.瞬间两片金箔合拢了Immediately,thegoldleavescollapse.光显然可以移除金箔上的静电荷1.ightcanclearlyremovestaticelectricchargefromtheleaves.可以以某种方式除去我施加给他们的电子Itcansomehowkn
27、ockouttheelectronsIaddedtothem.但为何紫外光的效果Butwhyisultravioletlightsomuchbetter却比红光更为明显呢atdoingthisthanredlight?这个新的谜题被称为光电效应Thisnewpuzzlebecameknownasthephotoelectriceffect.紫外灾难和光电效应Theultravioletcatastropheandthephotoelectriceffect是物理学家所面临的两大难题werebigproblemsforphysicists,因为仅凭当时有限的科技水平becauseneitherc
28、ouldbeunderstood难以做出正确的解释usingthebestscienceofthetime.从科学角度可以确切地说Thesciencethatsaid,quiteunequivocally,光是一种波thatlightwasawave.观察我们周围Allaroundus,光能完美的表现出波的特性weseelightbehavinginaperfectlycommon-sensewavyway.看我手掌的阴影其边缘十分模糊1.ookattheshadowofmyhand.Itsfuzzyroundtheedges.我们知道这是因为光在遇到我手的边缘时Weunderstandthi
29、sasthelighthittingthesideofmyhand会发生细微的弯曲从而变得模糊andbendingandsmearingoutslightly,就如同水波遇到障碍物那样justlikewaterwavesaroundanobstruction.具有与波完全相同的基本特性Perfectlycommon-sense,wave-likebehaviour.而与前者不同它们是如此美轮美奂Andheressomethingelse,somethingratherbeautiful.看着这些肥皂泡1.ookatthesesoapbubbles.当光照射到其表面Shinealightonth
30、em,倾刻之间绚丽的彩色条纹便浮现其表面andgorgeouscolouredpatternsemergefromnowhere.如果你认同光是一种波Andthiswaseasily那么这种现象就很好解释explainedifyouacceptthatlightwasawave,光在肥皂泡薄膜的内外层不断反射与折射reflectingofftheouterandinnerlayersofthethinsoapfilm并最终交织在一起组成旋彩斑斓的彩虹andbreakingupintothecoloursoftherainbow.就像水平面上的波纹Ratherlikeripplesonthesu
31、rfaceofwater,光是以能量波的形式在空中传播lightwassimplyripplesofenergyspreadingthroughspace而光的这种性质就如同andthiswasasfirmlyaccepted地球是圆的而被大家深信不疑asthefactthattheearthwasround.尽管这种波理论能完美解释影子和肥皂泡的现象Butalthoughthiswavetheoryworksperfectlywellforshadows但当用其来解释紫外灾难andbubbles,whenitcametotheultravioletcatastrophe和光电效应时andph
32、otoelectriceffect.就显得力不从心了.Thewheelsstartedcomingoff.问题在于-光是怎么做到的Theproblemwasthis-howcouldlightdothis?为了能抓住这个不可思议的现象的本质Totrulygrasphowabsurdthisphenomenonwas,试想一下波浪在水中的表现也许会有所帮助itmightbeusefultoconsiderhowwavesinwaterbehave.嘿Hey!这是位于多塞特皇家救生艇协会总部的波浪模拟水池ThisisthewavetankattheRNLsheadquartersinDorset.
33、这里被用来训练救生艇队It,susedtotrainlifeboatteams面对不同情况的波浪时todealwitharangeofdifferent该如何处置kindsofwaterwaves.首先试一下小波浪只有30厘米高First,smallwaves,just30centimetreshigh.这些波浪力量并不算大Thesewavesdonthavemuchenergy,难以击倒最上面的瓶罐hardlyenoughenergytoknockthistopcanofftheother.但随着浪高逐渐涨至L5米时Butwhenthewavesgrowtooverametreandahal
34、f,情况大为改观itsaverydifferentproposition.这么大的浪让我飘忽不定Andtheyrereallythrowingmeabout.我根本不可能保持顶部瓶罐的平衡TheresnowayIcankeepthiscanbalancedonthetop.而这显而易见告知着我们Itsclearwhatwaterwavesaretellingus-越大越强的波浪则具有越多的能量bigger,moreintensewaveshavemorepower.它们能轻易击倒顶部的瓶罐Theyeasilyknockedmeandthecansaround.那么如果光真是波Soiflight
35、wasawave,越强的光则应能击退越多的电Pmoreintensityshouldknockoutmoreelectrons.但事实并非如此Butthatsnotwhathappened.还记得吗无论红光多么强Remember,nomatterhowintensetheredlightwas,金属片上的电子始终纹丝不动itstilldidntbudgeelectronsfromthemetal.但奇怪的是微弱的紫外光却能在几秒内就能奏效But,weirdly,weakultravioletworkedwithinseconds.所以把光当作波并不能解决难题Sothinkingoflighta
36、sawavejustwasntaddingup.为了解答这个问题就需要有异平寻常的思考方式Toresolvethis,someoneneededtothinktheunthinkable而在1905年有一人就做到了你或许听说过他and,in1905,someonedid.Youmaywellhaveheardofthem.他的名字就是阿尔伯特爱因斯坦HisnamewasAlbertEinstein.这是位于柏林的阿恒霍德天文台ThisistheArchenhold-SternwarteObservatoryinBerlin.安装于顶部的是个奇特且巨大的钢铁设施Perchedontopisast
37、range,hugeironandsteelconstruction,但这并不是一座炮而是一架天文望远镜butitsnotagun,itsactuallyatelescope.始建于l♥8♥9♥6年这台望远镜是其同类型中规模最大的Builtinl♥8♥9♥6,thetelescopewasoneofthelargestofitskind从而使得该天文台成为新时代科技届中intheworldandmadetheobservatorythego-toplace惊骇世俗的代表toengageandastoundthe
38、publicinnewscience.阿尔伯特爱因斯坦曾在此发表了AlbertEinsteingaveaveryfamouspubliclecturehere他那关于相对论的著名演说onhistheoryofrelativity这也是使得他声名大噪whichisofcoursewhathesmostfamousfor.但却不是让他获得诺贝尔奖的那次Butit,snottheworkthatwonhimtheNobelPrize.在1905年他同时又提出了In1905,hedalsocomeupwithanewtheorytoexplain川来解释光电效应的新理论thephotoelectric
39、effect而他的想法颇具划时代意义甚至还有些离经叛道andwhathesuggestedwasrevolutionaryandevenheretical.他认为Hearguedthat我们需要完全抛弃光是波的观念wehavetoforgetallabouttheideathatlightisawave转而要把光当作是一束andthinkofitinsteadasastreamoftiny,微小如子弹般的粒子bullet-likeparticles.而他用来形容光粒子的术语正是量子Thetermheusedtodescribeaparticleoflightwasaquantum.在爱因斯坦看
40、来一个量子就是一小股能量ToEinstein,aquantumwasatinylumpofenergy尽管在当时科技并不发达的1905年andalthoughin1905thewordwasntnew,他那把光当作量子的想法也足够疯狂theideathatlightcouldbeaquantumseemedcrazy.但就是遵循着爱因斯坦这看似疯狂的理论AndyetfollowingEinsteinshereticallineofthought经过缜密的逻辑推算toitslogicalconclusion所有关于光的难题都迎刃而解solvedalltheproblemswithlightata
41、singlestroke.我会用一个大致的类比来解释其中的原理lltrytoexplainhowthishelpsusingaroughanalogy.当然我的这个类比并非完美Ofcourse,likeallanalogies,itsfarfromperfect但希望能让你有更直观的物理学感受buthopefullyitllgiveyouasenseofthephysics来帮你理解tohelpyouunderstand为何把光当作一束粒子whythinkingoflightasastreamofparticles就能解释这神秘的光电效应solvesthemysteryofthephotoel
42、ectriceffect.在我的类比当中Inthisanalogy,these这些红球就代表着爰因斯坦的光量子redballsrepresentEinsteinslightquanta.而那些罐子,Andthosecansoverthere则是带电的金属aretheelectricityheldinthemetal.,在原本的实验中Now,intheoriginalexperiment,他们通过用光照射金属使得其表面产生电流theymadeelectricityflowfromthesurfaceofthemetal而在我的这个类比中byshininglightonit.Inmyanalogy
43、,mgoingtotry我将用我手中的红球去击打这些镰子andknockthosetincansoverusingtheseredballs.显然亳无作用Absolutelynoeffect.它们就好似红色光Thatsjustlikeredlight.根据爱因斯坦的理论AccordingtoEinstein,每一个红色光粒子都携带极少的能量eachparticleofredlightcarriesverylittleenergy因为红光频率较低becauseredlighthasalowfrequency.所以即使用很多红光粒子的强光,Soevenaverybrightredlightwith
44、manyredlightparticles也很难去除金属板表面的电子cantdislodgeanyelectronsfromthemetalplates,就如这些红球一样,justliketheredballs.现在我要用较重的蓝色高尔夫球Nowmgoingtouseheavierballslikethesebluegolfballs再试试击打那些罐子的效果andmgoingtotryandknockoffthetincanswiththese.它们则来表示实验中的紫外光Theyreliketheultravioletlightintheexperiment.然而现在每个单独的粒子都携带着更多
45、的能量Now,eachindividuallightparticlecarriesmoreenergy这是由于紫外光有更高的频率becauseultravioletlightishigherfrequency.只需少量的光线如喑淡的紫外光Justafewofthem,likeadimultravioletlight,就足以激发金属板上的电?areenoughtoknocktheelectronsoutofthemetalplate从而使金箔合拢andcollapsethegoldleaf.所以爱因斯坦的这个观点SoEinsteinsideathat光由无数小的粒子或者量子组成lightisma
46、deupoftinyparticlesorquanta恰是光电效应的完美解释isawonderfulexplanationofthephotoelectriceffect.我还记得当时我学到此时IrememberwhenIfirstlearntaboutthis,被其精炼而简洁的叙述所震惊beingblownawaybyitssheereleganceandsimplicity.再者爱因斯坦那套精妙的理论也帮助解释了Butwhatsmore,Einsteinsniftyideaalsohelpedsolve普朗克对灯泡的疑惑Planck,smysteryofthelightbulb.紫外线之所以微平其微Therewasmoreredthanultraviolet是因为产生紫外光量子需要巨大的能量becauseultravioletquantatooksomuchmoreenergytomake,是产生普通光量子的100倍以上about100timesmoreenergy.难怪在灯光中几平不存在Nowondertherearesof