《编码器技术的利弊权衡思考.docx》由会员分享,可在线阅读,更多相关《编码器技术的利弊权衡思考.docx(7页珍藏版)》请在三一办公上搜索。
1、编码器技术的利弊权衡思考在多种应用中,旋转编码器都是组成运动控制反馈回路的关键元器件,包括工业自动化设备和过程控制、机器人技术、医疗设备、能源、航空航天等。作为将机械运动转换为电信号的器件,编码器可为工程师提供位置、速度、距离和方向等基本数据,用以优化整个系统的性能。光学式、磁式和电容式是可供工程师使用的三种主要编码器技术。不过,要确定哪种技术最适合最终应用,还需要考虑一些因素。为了帮助工程师选型,本文将概述光学式、磁式和电容式三种编码器技术,并且略述各种技术的利弊权衡。编码器技术概述光学编码器多年来,光学编码器一直都是运动控制应用市场的热门选择。它由1.ED光源(通常是红外光源)和光电探测器
2、组成,二者分别位于编码器码盘两侧。码盘由塑料或玻璃制成,上面间隔排列着一系列透光和不透光的线或槽。码盘旋转时1.ED光路被码盘上间隔排列的线或槽阻断,从而产生两路典型的方波A和B正交脉冲,可用于确定轴的旋转和速度。5vHOv1IIMr1.njr1.r1.IM-1.r1.j1.1.图1:光学编码器的典型A和B正交脉冲,包括索引脉冲尽管光学编码器应用广泛,但仍有几点缺陷。在工业应用等多尘且肮脏的环境中,污染物会堆积在码盘上,从而阻碍1.ED光透射到光学传感器。由于受污染的码盘可能会导致方波不连续或完全丢失,因而极大地影响了光学编码器的可靠性和精度。1.ED的使用寿命有限,最终总会烧坏,从而导致编码
3、器故障。此外,玻璃或塑料码盘容易因振动或极端温度而损坏,因而限制了光学编码器在恶劣环境应用中的适用范围;将其组装到电机上不仅耗时,而且受污染的风险更大。最后,如果光学编码器的分辨率较高,则会消耗100mA以上的电流,进一步影响了它应用于移动设备或电池供电设备。磁性编码器磁性编码器的结构与光学编码器类似,但它利用的是磁场,而非光束。磁性编码器使用磁性码盘替代带槽光电码盘,磁性码盘上带有间隔排列的磁极,并在一列霍尔效应传感器或磁阻传感器上旋转。码盘的任何转动都会使这些传感器产生响应,而产生的信号将传输至信号调理前端电路以确定轴的位置。相较于光学编码器,磁性编码器的优势在于更耐用、抗振和抗冲击。而且
4、,在遇到灰尘、污垢和油渍等污染物的情况下,光学编码器的性能会大打折扣,磁性编码器却不受影响,因此非常适合恶劣环境应用。不过,电机(尤其是步进电机)产生的电磁干扰会对磁性编码器造成极大的影响,并且温度变化也会使其产生位置漂移。此外,磁性编码器的分辨率和精度相对较低,在这方面远不及光学和电容式编码器。电容式编码器电容式编码器主要由三部分组成:转子、固定发射器和固定接收器。电容感应使用条状或线状纹路,一极位于固定元件上,另一极位于活动元件上,以构成可变电容器,并配置成一对接收器/发射器。转子上蚀刻了正弦波纹路,随着电机轴的转动,这种纹路可产生特殊但可预测的信号。随后,该信号经由编码器的板载ASlC转
5、换,以计算轴的位置和旋转方向。图2:编码器码盘的比较电容式编码器的优点电容式编码器的工作原理与数字游标卡尺相同,因此它所提供的解决方案克服了光学和磁性编码器的许多缺点。事实证明,CUlDeViCeS的AMT编码器系列所采用的这种基于电容的技术具有高可靠性、高精度的特性。由于无需1.ED或视距,即使遇到会对光学编码器产生不利影响的环境污染物(如灰尘、污垢和油渍),电容式编码器也能达到预期的效果。此外,相比光学编码器使用的玻璃码盘,它更不容易受到振动和极高/极低温度的影响。如前所述,因为电容式编码器不存在1.ED烧坏的情况,所以使用寿命往往比光学编码器长。因此,电容式编码器的封装尺寸更小,在整个分
6、辨率范围内电流消耗更小,只有6至18mA,这就使它更适合电池供电应用。鉴于电容式技术的稳健性、精度和分辨率均比磁性编码器高,因而后者所面临的电磁干扰和电气噪声对它的影响并不大。此外,在灵活性和可编程性方面,电容式编码器的数字特性也能带来关键优势。因为光学或磁性编码器的分辨率是由编码器码盘决定,所以需要其他分辨率时,每次都要使用新的编码器,以致于设计和制造过程的时间和成本均会有所增加。然而,电容式编码器具有一系列可编程的分辨率,为设计人员免去了每次需要新的分辨率时就要更换编码器的麻烦,这不仅减少了库存,而且简化了PID控制回路的微调和系统优化。涉及B1.DC电机换向时,电容式编码器允许数字对准和
7、索引脉冲设置,而这项任务对于光学编码器而言可能既反复、又耗时。内置的诊断功能使设计人员可以进一步访问系统数据,用以优化系统或现场排除故障。图3:电容式、光学式和磁式技术的关键性能指标比较CapacitiveOpticalMagneticResistancetoDirt,Dust,OilHigh1.owAccuracyHighHigh1.owTemperatureRangeWideMediumNarrowCurrentConsumption1.owHighMediumProgrammabilityYesNoNoPackageSizeSmallMediumMediumEMCImmunityHigh
8、HighHighMagneticImmunityHighHigh1.owResolutionRangeWideWideNarrow权衡选项在许多运动控制应用中,温度、振动和环境污染物都是编码器必须应对的重要挑战因素。事实证明,电容式编码器可以克服这些挑战。与光学式或磁式技术相比,它可为设计人员提供可靠、精准且灵活的解决方案。此外,电容式编码器还增加了可编程性和诊断功能,这种数字特性使其更适合现代物联网(I。T)和工业物联网OT)应用编码器的分类与使用编码器是一种集光、机、电技术于一体的速度位移传感器。当编码器轴带动光栅盘旋转时,由发光元件发出的光被光栅盘狭缝切割成断续的光线,并被接收元件接收,
9、从而产生初始信号,经后继电路处理后输出脉冲或代码信号。编码器具有体积小、重量轻、品种多、功能全、频响高、分辨能力强、力矩小、耗能低、性能稳定、灵敏可靠、寿命长等特点。一、编码器的常见类型编码器主要用来测量机械运动的速度、位置、角度、距离或计数,除了应用在产业机械上外,许多伺服电机也都需要配备编码器,以控制电机的换向、转速及位置,应用范围非常广泛。编码器的种类也有很多,不同类型的编码器功能也有所不同,根据检测原理,编码器可以分为光学式、电磁式、感应式和电容式。根据刻度方法及信号输出形式,可分为增量式、绝对式以及混合式等。1.1 增量式编码器增量式编码器将位移转换成周期性的电信号,再把这个电信号转
10、变成计数脉冲,用脉冲的个数表示计值的大小。增量式编码器在旋转时有相应的相位输出,需借助后部的判向电路和计数器来实现旋转方向的判别和脉冲数量的增减,它计数的起点可任意设定,并可实现多圈的无限累加和测量,还可以把每转发出的一个零位脉冲Z信号作为参考机械零位,当脉冲固定而需要提高分辨率时,可利用带90度相位差A、B的两路信号对原脉冲数进行倍频。1.2 绝对值编码器绝对值编码器旋转时,有与位置一一对应的代码输出,从代码大小的变更即可判别正反方向和位移所处的位置,无需判向电路。它有一个绝对零位代码,当停电或关机后再开机重新测量时,仍可准确地读出停电或关机位置地代码,并准确地找到零位代码。一般情况下绝对值
11、编码器的测量范围为0-360度,但特殊型号也可实现多圈测量。1.3 正弦波编码器正弦波编码器也属于增量式编码器,主要的区别在于输出信号是正弦波模拟量信号,而不是数字量信号。它主要是为了满足电气领域的需要,可以用作电动机的反馈检测元件。为了保证良好的电机控制性能,编码器的反馈信号必须能够提供大量的脉冲,尤其是在转速很低的时候,采用传统的增量式编码器产生大量的脉冲,从许多方面来看都有问题,当电机高速旋转(6000rpm)时,传输和处理数字信号是困难的。在这种情况下,处理给伺服电机的信号所需带宽很容易地超过MHZ门限;而采用模拟信号大大减少了这种麻烦,并有能力模拟编码器的大量脉冲。因为采用正弦和余弦
12、信号的内插法,可以获得基本正弦的高倍增加,例如可从每转1024个正弦波的编码器中,获得每转超过1000000个脉冲。接受此信号所需的带宽只要稍许大于100kHZ即已足够,内插倍频需由二次系统完成。1.4 多圈绝对式运用钟表齿轮机械原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮、多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。二、编码器的输出信号2.1 信号序列一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。当主轴以顺时针方向旋转时,A通道信号位于B
13、通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。2.2 零位信号编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲,零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。2.3 预警信号有的编码器还有报警信号输出,可以对电源故障,发光二极管故障进行报警,以便用户及时更换编码器。三、编码器的常见输出电路3.INPN电压输出和NPN集电极开路输出线路这种线路仅有一个NPN型晶体管和一个上拉电阻组成,因此当晶体管处于静态时,输出电压是电源电压,它在
14、电路上类似于TT1.逻辑,因而可以与之兼容。在有输出时,晶体管饱和,输出转为OVDC的低电平,反之由零跳向正电压。随着电缆长度、传递的脉冲频率及负载的增加,这种线路形式所受的影响随之增加。因此要达到理想的使用效果,应该考虑这些影响。集电极开路的线路取消了上拉电阻,这种方式晶体管的集电极与编码器电源的反馈线是互不相干的,因而可以获得与编码器电压不同的电流输出信号。3.2 PNP和PNP集电极开路线路这种线路与NPN线路是相同,主要的差别是晶体管,它是PNP型,其发射极强制接到正电压,如果有电阻的话,电阻是下拉型的,连接到输出与零伏之间。3.3 推挽式线路这种线路用于提高线路的性能,使之高于前述各
15、种线路。事实上,NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。推挽式线路在提升频率与特性的同时,有助于实现更远距离的数据传输,即使在高速率条件下也能保持优良的表现,信号饱和电平依旧保持在较低水平,然而与前述逻辑相比,在某些情况下可能较高。任何情况下,推挽式线路都适用于NPN或PNP线路的接收器。3.4 长线驱动器线路当运行环境需要随电气干扰或编码器与接收系统之间存在很长的距离时,可采用长线驱动器线路。数据的发送和接收在两个互补的通道中进行,所以干
16、扰受到抑制(干扰是由电缆或相邻设备引起的)。这种干扰可看成“共模干扰此外,总线驱动器的发送和接收都是以差动方式进行的,或者说互补的发送通道上是电压的差。因此对共模干扰它不是第三者,这种传送方式在采用DC5V系统时可认为与RS422兼容;在特殊芯片上,电源可达DC24V,可以在恶劣的条件(电缆长、干扰强烈等)下使用。3.5 差动线路差动线路用在具有正弦长线驱动器的模拟编码器中,这时要求信号的传送不受干扰。像长线驱动器线路那样,对于数字信号产生两个相位相差180度的信号,这种线路特意设置了120欧姆的特有线路阻抗,它与接收器的输入电阻相平衡,而接收器必须有相等的负载阻抗。通常情况下,在互补信号之间
17、并联连,120欧姆的终端电阻就达到了这种目的。四、编码器的常用术语4.1 输出脉冲数转编码器转动一圈所输出的脉冲数,对于光学式旋转编码器,通常与旋转编码器内部光栅的槽数相同(也可在电路上使输出脉冲数增加到槽数的2-4倍)。4.2 分辨率分辨率表示旋转编码器的主轴旋转一周,读出位置数据的最大等分数。绝对值型编码器不以脉冲形式输出,而以代码形式表示当前主轴位置(角度),它与增量型编码器不同,相当于增量型编码器的“输出脉冲/转4.3 光栅光学式旋转编码器的光栅有金属和玻璃两种。金属制成的光栅开有通光孔槽,玻璃制成的光栅在玻璃表面涂了一层遮光膜,并在上面设有透明线条(槽)。槽数少的场合,可在金属圆盘上
18、用冲床加工或腐蚀法开槽。4.4 最大响应频率最大响应频率是指在1秒内能响应的最大脉冲数。例如最大响应频率为2kHz,就代表1秒内可响应2000个脉冲。当编码器在高于最大响应频率下使用时,其内部电路没有反应,会导致编码器泄漏脉冲;最大响应频率会影响编码器的最高允许速度,即编码器轴在机械移动时可以承载的最高转速。在实际使用中,编码器的最大响应频率和最高允许速度这两个参数都应考虑在内,必须使编码器的实际运行状态低于这两个值的规定值才能正常使用。计算公式:最大响应转速(rpm)60(脉冲数/转)=输出频率(HZ)最大响应频率(HZ)/(脉冲数/转)x60=轴的转速(rpm)4.5 输出信号相位差二相输
19、出时,二个输出脉冲波形的相对时间差。4.6 输出电压指输出脉冲的电压。输出电压会因输出电流的变化而有所变化。4.7 起动转矩使处于静止状态的编码器轴旋转必要的力矩。一般情况下运转中的力矩要比起动力矩小。4.8 轴允许负荷表示可加在轴上的最大负荷,有径向负荷和轴向负荷两种。对于水平方向放置的编码器轴来说,径向负荷是垂直方向的,受力与偏心、偏角等有关;轴向负荷是水平方向的,受力与推拉轴的力有关。这两个力的大小会影响轴的机械寿命。4.9 轴惯性力矩表示旋转轴的惯量和对转速变化的阻力。4.10 转速转速指示编码器的机械载荷限制。如果超出该限制,将对轴承使用寿命产生负面影响,另外信号也可能中断。编码器种
20、类及编码器原理编码器是一种将机械运动转换为数字电信号的传感器。当驾驶员想要控制电机旋转时,U、V、W三相电气输出驱动电机运行。为了将电机转到某个位置或角度,我们将此位置称为目标值。我们需要知道此时电机转动的幅度和位置,否则电机只会盲目转动。在此过程中,编码器起反馈作用。编码器将转子旋转圆的不同位置分开,然后与转子一起旋转。前转子的位置实时反馈给驱动器,以便驱动器知道当前位置是否达到目标值。一旦达到目标值,控制U、V、W三相电的输出,使转子停止在此位置,从而控制任何位置或角度。简要介绍编码器的组成。1 .编码器介绍简而言之,编码器是一个提供反馈信号的传感器。它是一种用于反馈设备运动信息的装置。编
21、码器可以确定电机或其他移动设备的速度或位置信息,并将运动信息转换为电信号,可由运动控制系统中相应类型的接口模块读取。由于编码器可以提供反馈信号来确定位置、速度或方向,因此它是小型伺服电机高精度和精确操作的重要组成部分,即使对于用于改善重载的大型电机,如起重机,也是如此。事实上,编码器几乎可以在每个行业中找到,从石化行业到制浆造纸行业,从精密电子到汽车制造。2 .编码器原理编码器可以使用不同类型的技术来生成信号,包括机械、磁性、电阻和光学信号。在光学传感中,编码器根据光的中断提供反馈,即利用光传输原理扫描码盘。脉冲由开槽板的机械运动产生。通过将光传输到光敏元件,光通过码盘孔产生电压,电压由电子系
22、统作为二进制信号处理。3 .编码器类型从信号产生的类型来看,数字编码器通常选择测量位置和运动随时间的变化。然而,有时有必要考虑环境因素并使用其他测量组件。例如,在恶劣环境或振动条件下,必须使用旋转变压器或测速发电机(测速)进行测量。就硬件结构而言,它主要分为线性编码器或旋转编码器。线性编码器处理物体沿路径或直线的移动。旋转编码器随电机旋转以检测旋转运动信息。根据使用的技术、电源类型或记忆当前位置的能力,编码器可分为增量型和绝对值型。(1)增量式编码器增量编码器(也称为增量或脉冲编码器)是一种转换器,可以产生电脉冲,以确定旋转运动中角度的增量。增量编码器的特点之一是输出的脉冲数不变,这决定了测量
23、系统的精度。除了绝对定位需要归零之外,增量式编码器还具有成本低、分辨率高、体积小、易于更换、抗干扰能力强、运行可靠、数据传输速度快等特点。增量编码器并不意味着绝对位置信息,而只是意味着位置变化。由于增量编码器不提供任何关于绝对位置的信息,当使用增量编码器检测位置时,驱动器将在断电后丢失位置值。再次通电后,驾驶员无法确定电机轴位置和机器位置之间的关系。因此,在绝对定位之前,驾驶员需要主动返回参考点(归零、参考、原点等不同的描述符),然后驾驶员可以再次建立电气零点和机器零点之间的关系。增量编码器广泛应用于异步感应电机的工业应用中。(2)绝对值编码器系列绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。编码器种类及型号原理旋转变压器与其他编码器的不同之处,在于其输出的是模拟量正余弦信号,而不是方波脉冲信号,因此在应用于伺服系统中,需要一定的接口电路,或者称为分解器数字变换器,来实现模拟信号到控制系统数字信号的转换。分解器是旋转变压器的另一种叫法,因为旋转变压器输出正弦信号和余弦信号,其实就是一种信号正交分解的形式。