Fatigue-is-a-risk-factor-for-flight-performance.docx

上传人:李司机 文档编号:7216728 上传时间:2024-06-29 格式:DOCX 页数:10 大小:27.36KB
返回 下载 相关 举报
Fatigue-is-a-risk-factor-for-flight-performance.docx_第1页
第1页 / 共10页
Fatigue-is-a-risk-factor-for-flight-performance.docx_第2页
第2页 / 共10页
Fatigue-is-a-risk-factor-for-flight-performance.docx_第3页
第3页 / 共10页
Fatigue-is-a-risk-factor-for-flight-performance.docx_第4页
第4页 / 共10页
Fatigue-is-a-risk-factor-for-flight-performance.docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《Fatigue-is-a-risk-factor-for-flight-performance.docx》由会员分享,可在线阅读,更多相关《Fatigue-is-a-risk-factor-for-flight-performance.docx(10页珍藏版)》请在三一办公上搜索。

1、Fatigueisariskfactorforflightperformanceandsafetyincommercialaviation.InUScommercialavi-ation,tohelptocurbfatigue,themaximumdurationofflightdutyperiodsisregulatedbasedonthescheduledstarttimeandthenumberofflightsegmentstobeflown.Thereisscientificsupportforregu-latingmaximumdutydurationbasedonschedule

2、dstarttime;fatigueiswellestablishedtobemodulatedbycircadianrhythms.However,ithasnotbeenestablishedscientificallywhetherthenumberofflightsegments,perse,affectsfatigue.Toaddressthissciencegap.weconductedarandomized,counterbalanced,cross-overstudywith24active-dutyregionalairlinepilots.Objectiveandsubje

3、ctivefatiguewascomparedbetweena9-hordutydaywithmultipletake-offsandlandingsversusadutydayofequaldurationwithasingletake-offandlanding.Tostandardizeexperimentalconditionsandisolatethefatiguingeffectofthenumberofsegmentsflown,theentiredutyscheduleswerecarriedoutinahigh-fidelity,moving-base,full-flight

4、,regionaljetflightsimulator.Stepsweretakentomaintainoperationalrealism,includingsimulatedair-planeinspectionsandacceptancechecks,useofrealisticdispatchreleasesandairportcharts,real-worldairtrafficcontrolinteractions,etc.Duringeachofthetwodutydays,10fatiguetestboutswereadmiis-tered,whichincludeda10-m

5、inutePsychomotorVigilanceTest(PVT)assessmentofobjectivefatigueandSamn-Perelli(SP)andKarolinskaSleepinessScale(KSS)assessmentsofsubjectivesleepiness-fatigue.Resultsshowedagreaterbuild-upofobjectiveandsubjectivefatigueinthemulti-segmentdutydaythaninthesingle-segmentdutyday.Withdutystarttimeandduration

6、andothervariablesthatcouldimpactfatiguelevelsheld11stant.thegreaterbuild-upoffatigueinthemulti-segmentdutydaywasattributablespecificallytothedifferenceinthenumberofflightsegmentsflown.Comparedtofindingsinpreviouslypublishedlaboratorystudiesofsimulatednightshiftsandnighttimesleepdeprivation,themagnit

7、udeofthefatiguingeffectofthemultipletake-offsandlandingswasmodest.Ratingsofflightperformancewerenotsignificantlyreducedforthesimulatedmulti-segmentdutyday.TheUSdutyandflighttimeregulationsforcommercialaviationshortenthemaximumdutydurationinmulti-segmentoperationsbyupto25%dependingfunctionoftimeawake

8、(Daanetal.,1984;Dijketal.,1992).Thecircadianandhomeostaticprocessesinteracttogeneratepredictabledielpat-ternsoffatigue(DijkandCzeisler,1994;GabehartandVanDongen,inpress),wherethetermfatiguereferstosleepinessandperfor-manceimpairment(asiscommonpracticeinoperationalsettings;seeSatterfieldandVanDongen,

9、2013).Inthiscontext,regulatingmaximumdutydurationsasafunctionofstarttimetohelpmitigatefatigueandimprovesafetymakessense(VanDongenandHursh12010),especiallyindaytime-orientedoperations(additionalcom-plexitieslimittheeffectivenessofsuchregulationsinnighttimeoperations;e.g.,seeRanganetal.,2013).Thefatig

10、uesciencepertainingtonumberofsegmentsflownisnotaswelldeveloped.Mostoftheliteratureonaviationandfatiguehasfocusedonlong-rangeandultra-long-rangeflights(Holmesetal.,2012;Ganderetal.,2014)ratherthanshort-range,multi-segmentoperations.1.imitedevidencepertainingtoshort-rangeflightoperationscomesfromfield

11、studies,inwhichpilotssub-jectiveratingsoffatiguewerefoundtoincreasewiththenumberofsegmentsflowninthedutyperiod(Powelletal.,2007,2008).Inthesestudies,dutyschedulesandoperationalconditionswerenotstandardized,leavingtoomanypotentialconfoundstobeabletodrawconclusionsregardingthefatiguingeffectofflyingmu

12、l-tiplesegmentsperse.Noobjectivedatapertainingtofatigueinmulti-segment,short-rangeoperationshavebeenpublished.Still,itstandstoreasonthattheremaybeafatiguingeffectofflyingmultiplesegmentsinadutyday-inparticular,afatiguingeffectofmultipletake-offsandlandings.Thesecriticalphasesofflightarearguablythemo

13、stsafety-sensitive,andtheytypicallyhavethehighesttaskload(Hoermannetal.,2015).Asystemsbiologyviewofthebrainmechanismsunderlyingcognitiveimpairmentduetofatigue(VanDongenetal.,2011a)positsthattheeffectoffatigueonalertnessandperformanceiseuroalcircuituse-dependent,andisthuspredictedtobeafunc-tionoftask

14、load.Thispredictionhasbeenconfirmedinlaboratorystudies,whichhaveshownthatincreasedtaskloadacceleratesthedegradationofsubjectivealertnessandcognitiveperformanceduetocircadianrhythmandsleeploss(VanDongenandDinges,2007;Goeletal.,2014).Yet,theeffectofincreasedtaskloadonalertnessandperformanceinthelabora

15、toryappearstobemodestinmag-nitde.anditisaprioriuncleartowhatextentittranslatestoasignificanteffectofmultipletake-offsandlandingsinreal-worldoperations.Theobjectiveofthepresentstudywastohelpfillthissciencegap.Inactive-dutyregionalairlinepilots,wecomparedtheeffectoffatigueonalertnessandperformancebetw

16、eenadutyschedulecontainingmultiplesegmentsandadutyschedulentainingonlyasinglesegment.Dutystarttimeanddurationwereheldconstant,andtheorderofconditionswasrandomizedandcounterbalanced,withpilotsservingastheirowncontrols.Thedutyperiodswerecarriedoutusingahigh-fidelity,moving-base,full-flightsimla-tor.Th

17、isenabledustostandardizeandaccountforotherfatiguefactorscommonlyencounteredinreal-worldcommercialaviation(e.g.,airtrafficdensity,weather,scheduledelays),whileretainingahighdegreeofoperationalrealism.Herewereportthefirstobjec-tivedatapertainingtothefatiguingeffectofmultipletake-offsandlandingsinregio

18、nalairlineoperations.wety-fouractive-dutypilots-12captains(CAs)and12firstofficers(FOs)-ofaUSmmercialregionalairlinewererandomlyrecruitedfromamongtheairlineslineholderpilotscertifiedtoflytheBombardierCRJ-200regionalairplane.Onelineholderpilotscheduledforthestudybecameunavailableandwasreplacedbyareser

19、ve.Thepilotswere33.2yearsoldonaverage(range24-49),andthesampleincludedtwowomen.TheCAshadanaverageof9688hoftotalflightexperienceand5979hofCRJ-200flightepe-ri11ce;theFOshadanaverageof2829hoftotalflightexperienceand1475hofCRJ-200flightexperience.TheparticipatingpilotsweredomiciledontheeastcoastoftheUS.

20、Onthedaypriortothestudy,theywereflown(deadheaded)toCharlotte,NC1wherethestudytookplace.ThestudywasapprovedbytheInstitutionalReviewBoard(IRB)ofWashingtonStateUniversity.Allpilotsgavewritten,informedconsent.Datacollectedfromtheindividualpilotswerekeptcon-fidentialandwerenotsharedwiththeairlineoranyoth

21、erpartiesbesidestheresearchteam.The24pilotsformed12flightcrews,eachcomprisedofoneCAandoneFO.Eachcrewflewahigh-fidelity,moving-base,full-flightsimulator(CAElnc.,Saint-1.aurent,Quebec)oftheCRJ-200regionaljetairplane(Bombardierlnc.,Montreal,Quebec).Underthecontrolofasimulatoroperator-aflightinstructorw

22、hodidnotintervenewithregardtothepilotsflightperformance-twodif-ferentflightschedulesweresimulated.Oneschedulewasa9-hour.multi-segmentdutydayinwhichpilotsflew5shortsegments,fromSt.1.ouis,MO(ST1.)toSpringfield.I1.(SPI),toDallas.TX(DFW),toCorpusChristi,TX(CRP)1toHouston,TX(IAH),andlastlyto1.ittleRock,A

23、R(1.IT).Theotherschedulewasa9-hour,single-segmentdutydayinwhichpilotsflewfromMiami,F1.(MIA)toSeattle,WA(SEA),TheairportsintheseschedulesareassociatedwithclassBairspacerepresentativeoflargeairlinehubsandsmallerSatelliteairporlscommonlyservedbyregionalairlines.Thespecificairportsselected,whichinthesim

24、ulatorweremodeledaftertherealair-ports,werenotlikelytobefamiliartothepilotsparticipatinginthestudy.Inarandomized,cross-overstudydesign,eachflightcrewpar-ticipatedinthestudyfortwoconsecutivedays.Sixcrewsflewthemulti-segmentdutydayfirst;theothersixcrewsflewthesingle-segmentdutydayfirst.Inthemulti-segm

25、entdutyday.theCAalwaysflewsegments1,3,and5whiletheFOmonitored,andtheFOflewsegments2and4whiletheCAmonitored.Thesingle-segmentdutydaywasrandomizedsothatinhalfofthecrewsitwasflownbytheCAandintheotherhalfitwasflownbytheFO.Forboththemulti-segmentandsingle-segmentdutydays,scheduleddeparture(blockout)timef

26、orthefirst(oronly)seg-mentwas06:00,andscheduledarrival(blockin)timeforthelast(oronly)segmentwas14:00.Thesingle-segmentflightfromMiamitoSeattletookanindirectroute,flyingwesttoCaliforniabeforeturningnorthtowardSeattle.Thisresultedin8hofflighttime,whichbyregulationwasthemaximumallowableflighttimeforuna

27、ugmentedcrewsatthetimeofdatacollection.Inthemulti-segmentdutyday,thesameperiodallowedforinclusionoffiveflightsegments.Onbothdutydays,thedutyperiodbeganat05:15allowingfor45minofpreparationtime,andendedat14:15after15minforpost-flightduties,foratotalof9honduty(05:15-14:15).SeeFig.1,At17:00ontheeveningb

28、eforetheirtwosimulatorflightdays,researchersbriefedeachpilotcrewonthestudyprocedures.Inabriefingsessionlastinguptoanhour,thegoalsofthestudyandthescheduleofthesimulatordayswerediscussed,includingwhetherthemulti-segmentorthesingle-segmentdaywouldbeflownfirstandwhowouldflyeachflightsegment.Pilotswerein

29、structedtotreatthesimulatedflightswiththesameprofessionalismasrealpassenger-carryingrevenueflights.Theywereremindedthattheirperformanceinthestudywouldnotbesharedwiththeairline.Pilotsalsoreceivedinstructiononandpracticewiththeproceduresforfatiguetesting(seeSections2.3.1and2.3.2).Finally,theyweregiven

30、acopyoftheairportchartsusedinthestudysothattheycouldreviewtheminadvance.Theexperimentalprocedureswerehighlystandardized,provid-ingthesameexperienceforallpilotcrews.Yet.thedutyperiodswereasrealisticaspossible,toresemblenormaldutydaysinreal-worldoperations.Pilotsweretoldthatthesimulatorflightsweretobe

31、flownlikereal,passenger-carryingflightsandunderthepre-vailingregulatoryprovisions.Theywereaskedtoreportfitforduty(theywerenotgivenanyspecificinstructionsonhowtomanagetheirsleep).Theycametothesimulatordressedinuniformandcarryingtheirflightbags.Althoughtheflightscenarioscontainednounexpectedprocedures

32、oremergencies,thepilotswereinstructedtobereadytorespondtoanyemergenciesthatmightoccur,justlikeintherealworld.Realisticdispatchreleaseswerereviewedandsignedbythepilotspriortoeachflightsegment.Thesecontainedtheinforma-tionthatwouldbesenttoairtrafficcontrol(ATC)1suchastheintendedrouteofflight,speed,and

33、altitude.Weatherreportswereprovided,includingthe(simulated)currentandforecastedweatherforthedepartureanddestinationairportsandotherairportsalongtheintendedroute.Alsoincludedinthepaperworkprovidedpriortoeachflightweretheflightperformancedatafortake-off,suchasthespeedsandaircraftweights,aswellasthereq

34、uiredlandingdistanceinformationatthedestinationairport,andtheflightplananalysisdata,whichgavedetailedinformationabouttheplannedrouteofflightwithestimatesoffuelremainingatselectedway-pointsalongtheroute.Navigationchartsforeachoftheairportsweregeneratedforthestudyandwereavailableinabinderinthecockpit.

35、Pilotsbeganeachflightdaytakingashuttlefromanearbycrewhoteltothesimulatorfacility,wheretheybegantheirdutyperiodat05:15.Theymetwithamemberoftheresearchteaminabrief-ingroomtoreviewexpectationsfortheday.Theywereremindedtokeeptheirmobilephonesturnedoffinthesimulator,andtogivetheirbesteffortandrefrainfrom

36、talkingduringfatiguetesl-ing.Theyalsoreceivedthedispatchreleaseandotherpaperworkfortheirfirstflight(inthemulti-segmentdutyday)oronlyflight(inthesingle-segmentdutyday).Theyproceededtoenterthesimula-torandprepareasiftheywerereadyingarealairplanefortheirfirstflightoftheday.Theysettledintotheckpit,andco

37、nductedtheirfirst-flight-of-daychecks.Oneofthepilotsconductedasimulatedwalk-aroundinspectionoftheairplane(usingamarkedpathonthegroundbelowtheflightsimulator),Throughoutthedutyperiod,pilotsinteractedwithATC1wherethesimulatoroperatorservedastheairtrafficcontroller.CuedbyATCatthescheduledtime,theybegan

38、taxiingandtookoff.Whileenroute,theymadenormaluseoftheautopilot.Airspace-specificATCbackgroundchatter,recordedduringrealflightspriortothestudy,wasplayedbackduringflighttoaddtotherealism.Attheendofeachflightsegment,thepilotsconductedaroutinedescentandlandedtheairplane,againinter-actingwithATC,andtaxie

39、dfromtherunwaytoadesignatedgate.Alltake-offsandlandingswereconductedunderinstrumentflightrules(IFR)meteorologicalconditions.Inthemulti-segmentdutyday,thepilotcrewsutilizedthetimespentatairportsbetweenflightsegments,calledturns,tousetherestroomandtogetfoodanddrink.Afewpilotswentot-sidetosmoke,astheyw

40、ouldduringrealmulti-segmentoperations.Beforethenextflight,onepilotofeachcrewpickedupthenewdispatchreleaseandassociatedpaperwork,whiletheothern-ductedawalk-aroundofthesimulator.Thepilotsthencompletedtheirnormalchecksandpreparedfortheupcomingflight.Inthesingle-segmentdutyday,therewerefouropportunities

41、totakethesimulatoroffmotiontoallowforbriefbreaksin*lthebackoftheplane.Theseoff-motionbreakopportunitieswerescheduledatthesametimesaswhentheturnsoccurredinthemulti-segmentdutyday.Ifpilotsoptedtoutilizeascheduledoff-motionbreakopportunity,thesimulatorhydraulicsweretemporarilyloweredandagatewasextended

42、,allowingexitfromandre-entryintothesimulator.Allnormalflightprocessesandcontrolscontinuedwhileoffmotion,andpilotscouldonlyleavetheckpitoneatatime(whiletheothercontinuedtoflythesimulator).Theycouldeachquicklyusethelavatoryandgetfoodanddrink.However,theywerenotallowedtogooutsidetosmoke,astheywouldnotb

43、eabletodosoin-flightduringreal-worldoperations.疲惫是民航K行性能和平安性的个危急因素.美国商业航空,仃助于遇制疲惫,飞行任务期间的最大时间是基于预定的起先时间和飞行段数去调整。有调整最大占空时间依据预定的起先时间的科学支持:疲惫是公认的是由昼夜节律调制。然而,它并没有建立科学的K行段,每本身,影响疲惫的数量。为了解决这一科学的差距,我们进行了一项随机、交叉平衡,与24名现役飞行员探讨区域.客观和主观疲惫比较小时值班日之间多起降与一个单一的起飞和着陆的持续时间相等的责任的一天。规范试验条件和隔离的疲惫的效果,段数飞行,整个任务调度进行了高保真,移动

44、基地,全飞行,喷气式飞机飞行模拟器。已实行措施来保持业务的现实主义,包括模拟七机的检查和验收,运用现实调度发布机场图,真实世界的空中交通限制等相互作用,在每两个工作天,10疲惫忒验的较辰,收集资料,其中包括一个10分钟的PVT测试客观般惫似雷利评估和卡罗林斯卡嗜睦量表主观嗜睡和疲惫评估。结果表明,更大的枳累的客观和主观疲惫的多节段的工作日比在雎节工作日。随着工作的起先时间和持续时间和其他变域,可以影响疲惫水平保持不变,更大的疲惫在多节任务的天是由于特殊是在S行段的数量的差异。相比此前公布的试验室探讨模拟晚上和夜间睡眠捌夺的结果,巨大的疲惫效应的多个起降是温柔的.飞行性能的评级并没有显着削减模拟

45、的多节任务的一天.美国商业航空的任务和飞行时间的规定缩短了在多节段的最高工作时间,由高达25%,这取决于任务的起先时间。目前的结果是个重要的第步,在理解疲惫多节段的操作,并供应支持的飞行段作为一个相关的因素,在调整最大工作时间.尽管如此,依据我们的疲惫结果,作为一个功能的飞行段数的最大占空比的更温柔的削减可能会被芍虑。然而,须要进步的探讨,包括调查匕行平安,并延长我们的调杳结果,夜间作业。旅客携带的国内航班在美国商业航空管理,直到最近,在职责的飞行时间规定在标题14联邦法规法典(CFR)121部分的规定。在非飞行操作(只包含最小数量的飞行员操作飞机的飞行员值班时间限制),最大16小时和8小时的

46、最大单位值班期间飞行时间的规定.这些要求是固定的,无论在工作期间的航班数量(即,起K和着陆的数量)。新的任务和K行时间的规定,在美国国内业务,依据现有的疲惫和平安的科学,2014年1月4日生效。在这些新的法规,包括在标题14CFRPart117,值班时间是有限贡任的起先时间作为一个功能,作为个在值班期间K行段数函数。在新的规定,值班期间5和6之间起先,例如,仅限于12H1和4航班卜.降段之间,逐步到10.5小时(削减12.5%)7个飞行段或多。同样,一个值班期间07:00到12点起先限制14HI或2航班赛格,逐步到IIoh下降(削减17.9%)7个飞行段或多。最大持续时间在非作战值班期间9小时

47、和14小时之间改变,取决于任务的起先时间。在任务期间的最大持续时间的削减,作为一个功能的预定E行段范用从0%到25%不等,取决于任务起先时间。任务起先时间限制任务持续时间的相关性是通过建立疲惫科学证明。内源性昼夜节律产生白天和夜间的波峰和波谷的主观警觉性和认知实力.此外,内源性睡眠,唤醒的桎态过程调整的警觉性和性能作为一个梆着的时间函数。昼夜和桎态过程的相互作用,产生可预料的昼夜模式疲惫,这个词指的是嗜睡和疲惫性能障碍(如操作设置:通常的做法是看到萨特菲尔凌,范栋勤,2013)在这样的背珏下,调整最大占空时间为起先时间函数来帮助缓解疲惫和提高平安意识2010范栋勤和赫斯,),尤其是在白天化运作

48、(额外的时间困难性进行限制性规定在夜间操作:例如,看到卡斯特利兰根,2013).疲惫科学有关的段U行的教量是不发达的。大多数航空与疲惫的文献主要集中在远程和超远程航班(福尔摩斯,2012;甘氟2014)而不是短距离、多段操作。有限的证据属短程飞行操作来自领域探讨,其中飞行历主观评定疲惫均与段飞在值班期间的数里增加(鲍威尔等,2007.2008)在这些探讨中,任务支配和操作条件不规范,留下太多的潜在的混满能够对于疲惫的效果,多段飞行本身得出结论。没仃客观的数据,在多节段,短距离的操作已发表的疲惫。不过,按理说,可能会有疲惫的效果,在值班日-特殊飞行多段,疲惫的影响多的起飞和着陆。这些关键的飞行阶

49、段可以说是最平安的做感,他们通常有最高的任务负我霍曼等人,2015).大脑的种机制,认知功能障碍,由于疲惫系统生物学的观点(范栋,2011A)断定的瞥觉性和性能疲惫作用神经元回路运用依靠性,因而是预料是一个函数的任务负我.这一预料在试瞪室探讨中己经证明,这表明,增加任务负荷加速降解的主观警觉性和认知性能由于昼夜节律和睡眠损失(VanDongen和大卫2007:GoH等人,2014),然而,增加的工作负载在试脸室的警觉性和性能的影响好像在幅度是温柔的,它是个先验不清晰到什么程度,这意味着多个起先和着陆在实际操作中效果显著。本探讨的目的是帮助填补这一科学空白。在现役区域航空公司的飞行员,我们比较f疲惫的影响,在一个任务时辰表包含多个分部和一个任务时辰表,只包含个单一的分部疲惫的影响。任务起先时间和持续时间均保持不变,和条件的依次是随机的,平衡的,作为自己的限制的飞行员,值班期间进行高保或、移动鞋地,全飞行模拟装置“这使我们能够规范和帐户在现实世界的商业航空(例如,空中交通密度,天气,时辰表延误)的其他疲惫因素,同时保留了高度的操作性。在这里,我们报告的第一目标数据有关的疲惫的效果,多起降区域航空业务

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号