PCR及其衍生技术解析课件.ppt

上传人:小飞机 文档编号:1286993 上传时间:2022-11-04 格式:PPT 页数:87 大小:3.28MB
返回 下载 相关 举报
PCR及其衍生技术解析课件.ppt_第1页
第1页 / 共87页
PCR及其衍生技术解析课件.ppt_第2页
第2页 / 共87页
PCR及其衍生技术解析课件.ppt_第3页
第3页 / 共87页
PCR及其衍生技术解析课件.ppt_第4页
第4页 / 共87页
PCR及其衍生技术解析课件.ppt_第5页
第5页 / 共87页
点击查看更多>>
资源描述

《PCR及其衍生技术解析课件.ppt》由会员分享,可在线阅读,更多相关《PCR及其衍生技术解析课件.ppt(87页珍藏版)》请在三一办公上搜索。

1、第十一章 聚合酶链反应 PCR及其衍生技术,第十一章 聚合酶链反应 PCR及其衍生技术,PCR的用途,体外扩增特异DNA片段的技术,能快速、特异地扩增目的DNA片段。能通过试管内的数小时反应将特定的DNA 片段扩增数百万倍。迅速获取大量的单一核酸片段,为分子生 物学研究提供了强大的工具。,PCR的用途体外扩增特异DNA片段的技术,能快速、特异地扩增,1953年,Watson和Crick提出DNA双螺旋结构及半保留复制模型。1958年,Meselson和Stahl用实验证实DNA半保留复制模型。70年代以来,人们采用两种思路去尝试建立基因的无性繁殖体系,一是基因克隆技术,二是体外扩增技术。,发展

2、历程,1953年,Watson和Crick提出DNA双螺旋结构及半,1971年,Khorana(美国MIT教授,1968年诺贝尔医学奖得主):“经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。”核酸体外扩增最早设想被遗忘原因:(1)很难进行测序和合成寡核苷酸引物;(2)1970年Smith等发现了II型限制性内切酶,体外克隆基因已成为可能。,1971年,Khorana(美国MIT教授,1968年诺贝尔,1976年,台湾省籍科学家钱嘉韵(Alice Chien)从黄石国家公园的嗜热菌Thermus aquaticus中分离出热稳定的Taq DNA聚合

3、酶。1985年,美国Cetus公司人类遗传研究室的Mullis发明聚合酶链反应(Polymerase Chain Reaction,PCR),Saiki等首次应用PCR法成功地扩增了人-珠蛋白的DNA,并应用于镰刀状红细胞贫血的产前诊断。,1976年,台湾省籍科学家钱嘉韵(Alice Chien)从,1988年Saiki开始将耐热性Taq DNA聚合酶应用于PCR,整个反应只加一次酶即可,扩增特异性和效率都明显改善,操作大为简化。1989年被誉为“分子年”,列PCR为十余项发明之首。1993年,Mullis荣获诺贝尔化学奖。,1988年Saiki开始将耐热性Taq DNA聚合酶应用于P,PCR

4、的基本原理,试管中进行的DNA复制反应,依据DNA半保留复制的机理;体外DNA分子于不同温度下可变性和复性的性质;通过人为控制体外合成系统的温度,使双链DNA变成单链,单链DNA与人工合成的引物退火,DNA聚合酶使引物沿着单链模板延伸为双链DNA。,PCR的基本原理试管中进行的DNA复制反应,依据,待扩增片段,PCR及其衍生技术解析课件,高温变性,高温变性,低温退火,低温退火,中温延伸,中温延伸,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PC

5、R及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR每一步的转换通过温度的改变控制。DNA模板解链(变性)、引物与模板结合(退火)、DNA聚合酶催化新生DNA的合成(延伸)三个步骤构成PCR反应的一个循环。此循环反复进行,可使目的DNA得以迅速扩增。,PCR每一步的转换通过温度的改变控制。DNA模板解链(变性),理论扩增率:2n递增(n为循环次数),2530循环,目标DNA可增加109倍。实际扩增率:()n,X为PCR的实际扩增率,平均约为75%。由于引物和底物的消耗,酶活力的下降等因素,扩增产物的增加,逐渐由指数形式变为线性形式,所以实际上进行30个循环后,扩增倍数一般可达106107

6、。以上“变性、退火、延伸”三部曲为PCR一轮循环。,理论扩增率:2n递增(n为循环次数),2530循环,目标D,PCR扩增曲线,PCR扩增曲线,PCR 反应体系与流程,反应体系模板(DNA或RNA)引物Taq DNA聚合酶10PCR缓冲液1.54 mM Mg2+0.2 mM dNTP,反应流程预变性变性退火延伸延伸完全终止,2535循环,PCR 反应体系与流程反应体系反应流程2535循环,一、PCR 的反应体系,引物(primer)酶 (Taq DNA polymerase) dNTP模板 (template) Mg2+ (magnesium),一、PCR 的反应体系引物(primer),1、

7、引物,引物:决定PCR反应的特异性PCR 产物的特异性取决于引物与模板DNA互补的程度理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,用 PCR就可将模板DNA在体外大量扩增,1、引物引物:决定PCR反应的特异性,基本原则是最大限度地提高扩增效率和特异性,同时尽可能抑制非特异性扩增。,引物设计的原则,基本原则是最大限度地提高扩增效率和特异性,同时尽可能抑制非特,引物长度: 15-30bp,常用20bp左右 引物的有效长度不能大于 38 bp,否则最适 延伸温度会超过TaqDNA聚合酶的最适温度 (74),不能保证PCR扩增产物的特异性引物扩增跨度:以500bp为宜

8、特定条件下可扩增长至10kb的片段,引物长度: 15-30bp,常用20bp左右,引物碱基:G+C含量以40-60%为宜 G+C太少扩增效果不佳,G+C 过多易出现非特异条带 ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列,尤其3端不应超过3 个连续的G或C,因为这样会使引物在G+C富集区 引发错误延伸避免引物内部出现二级结构和引物间互补 特别避免 3端的互补,否则会形成引物二聚体,产生非特异性的扩增条带,引物碱基:G+C含量以40-60%为宜,PCR及其衍生技术解析课件,引物 3端的碱基要求严格配对(不能做任何修饰) 特别是最末及倒数第二个碱基,以避免因末端 碱基不配对而导致

9、PCR失败引物5端可修饰 引物5端限定着PCR产物的长度,但对扩增特 异性影响不大;引物5端碱基可不与模板DNA 互补而呈游离状态;引物5端最多可加10个碱 基而对PCR反应无影响,引物 3端的碱基要求严格配对(不能做任何修饰),3,5,3,5,限制性内切酶的识别序列启动子序列定点突变探针标记,3535限制性内切酶的识别序列,引物的特异性: 引物应与核酸序列数据库的其它序列无明显同源性引物量: 每条引物的浓度0.1 0.5M,以最低引物量产生所需要的结果为好引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会,引物的特异性:,实例:设计人类GAPDH基因mRNA的引物,用Pr

10、imer Premier软件设计引物;在UCSC Genome Browser上验证(如果失败则重新设计),实例:设计人类GAPDH基因mRNA的引物用Primer,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,我们设计的引物,是根据GAPDH的mRNA序列设计的,理论扩增长度是318bp,但它却在人类基因组上扩增出了两个片段;第一个片段来自12号染色体的扩增,长度为2409bp;第二个片段

11、来自X染色体的扩增,片段长度是318bp。那么,那个扩增片段才是正确的呢?我们设计的这一对引物可否用于扩增人类GAPDH基因片段呢?,我们设计的引物,是根据GAPDH的mRNA序列设计的,理论扩,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,12号染色体扩增出的序列是真正的GAPDH基因。在下面的序列比对中,我们可以发现,X染色体上被扩增出的序列实际上是GAPDH的加工的假基因(processed pseudogene)。因此,如果我们能保证作为模板的cDNA不混杂有染色体DNA,就可以用这一对引物扩增GAPDH。,12号染色体扩增出的序列是真正的GAPDH基因。,2、酶及其浓度,目

12、前有两种 Taq DNA 聚合酶供应天然酶:从水生嗜热杆菌中提纯基因工程酶:大肠菌合成一个典型的 PCR反应约需酶量1- 2.5U/100 ul体系浓度过高可引起非特异性扩增,浓度过低则合成产物量减少,2、酶及其浓度目前有两种 Taq DNA 聚合酶供应,PCR及其衍生技术解析课件,Taq 酶的保真性不高53聚合酶活性和53外切酶活性,无35外切活性;在PCR反应中如发生某些碱基的错配,该酶是没有校正功能的。保真性不如Pfu DNA聚合酶等。,Taq 酶的保真性不高,3、dNTP 的质量与浓度,在PCR反应中,dNTP应为50200M,浓度过低会降低PCR产物的产量注意4种dNTP的浓度要相等

13、(等摩尔配制 ),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配高浓度的dNTP可与Mg2+结合,使游离的Mg2+浓度下降,影响DNA聚合酶的活性,3、dNTP 的质量与浓度在PCR反应中,dNTP应为50,4、模板DNA,模板DNA的来源: 微生物中提取DNA 从细胞中提取DNA:血细胞、绒毛、尿样、毛 发、精斑、口腔上皮细胞 固定和包埋的组织标本:脱蜡、蛋白酶K消化模板DNA的浓度: 0.12ug/100ul体系 PCR产量随模板DNA浓度的增加而显著升高 模板DNA浓度过高导致非特异性产物增加,4、模板DNA模板DNA的来源:,5、Mg2+浓度,Mg2+对PCR扩增的特异

14、性和产量有显著的影响在一般的 PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.52.0 mmol/L为宜Mg2+浓度过高,反应特异性降低,出现非特异扩增, 浓度过低会降低 Taq DNA聚合酶的活性,使反应产物减少,5、Mg2+浓度Mg2+对PCR扩增的特异性和产量有显著的影,二、PCR 的反应流程,温度与时间的设置循环次数常见问题,二、PCR 的反应流程温度与时间的设置,1、温度与时间的设置,设置变性-退火-延伸三个温度点标准反应中采用三温度点法,双链DNA在9095变性,再迅速冷却至4060退火,然后快速升温至7075延伸,对于较短靶基因(长度100300bp)可采

15、用二温度点法, 将退火与延伸温度合二为一,一般采用94变性,65左右退火与延伸。,1、温度与时间的设置设置变性-退火-延伸三个温度点, 变性温度与时间:,一般9394,1min足以使模板变性若低于93则需延长时间但温度不能过高,因为高温环境对酶的活性有影响。, 变性温度与时间:一般9394,1min足以使模板变, 退火(复性)温度与时间:,退火温度是影响PCR特异性的重要因素退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基因序列的长度对于20个核苷酸,G+C含量约50%的引物,55作为选择最适退火温度的起点较为理想, 退火(复性)温度与时间:退火温度是影响PCR特异性的重,引物的复

16、性温度通过以下公式帮助选择合适的温度:,Tm(解链温度)4(G+C)+2(A+T)复性温度=Tm值(510)在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性复性时间一般为3060s,足以使引物与模板之间完全结合,引物的复性温度通过以下公式帮助选择合适的温度:Tm(解链温, 延伸温度与时间:,Taq DNA聚合酶的生物学活性: 7080 150核苷酸/S/酶分子 70 60核苷酸/S/酶分子 55 24核苷酸/S/酶分子 高于90时,DNA合成几乎不能进行, 延伸温度与时间:Taq DNA聚合酶的生物学活性:, 延伸温度与时间:,延伸温度:一般选

17、择在7075之间常用温度为72过高的延伸温度不利于引物和模板的结合。延伸反应时间:根据待扩增片段长度而定1Kb以内的DNA片段,延伸时间1min(足够) 34kb的靶序列需34min扩增10kb需延伸至15min延伸时间过长会导致非特异性扩增对低浓度模板的扩增,延伸时间要稍长些, 延伸温度与时间:延伸温度:一般选择在7075之间,2、循环次数,循环次数决定PCR扩增程度循环次数主要取决于模板DNA的浓度循环次数:选在3040次之间循环次数越多,非特异性产物的量亦随之增多,2、循环次数循环次数,如何提高PCR中的DNA聚合酶的保真性?在PCR反应体系中,除使用Taq DNA聚合酶,掺入少量的具有

18、35外切酶活性的耐热DNA聚合酶,如Pfu,Vent,Pwo等,错配率可降为原来的 1/10;Mg2+浓度尽可能低,但不影响DNA合成;减少高温反应时间,这样DNA热损伤将减少;减少循环数。,如何提高PCR中的DNA聚合酶的保真性?,如何提高PCR扩增的特异性?升高退火温度可增加引物与模板结合的特异性;缩短退火和延伸时间,可减少错误引发及多余的DNA聚合酶分子参与酶促延伸的机会;降低引物和酶的浓度也可以减少错误引发,尤其是能减少引物二聚体的引发;改变Mg2+的浓度可进一步提高扩增的特异性。,如何提高PCR扩增的特异性?,引物设计的特异性;减少循环次数;热启动(Hot Start)。即首先将模板

19、变性,然后在较高温度时加入Taq DNA聚合酶、引物及MgCl2等一些重要成分,这样使得引物在较高温度下与模板退火,提高了反应的严谨性,使扩增更特异;采用二对引物即外引物和内引物进行扩增来提高扩增的特异性。,引物设计的特异性;,PCR技术的主要类型,(1)反向PCR技术(Inverse PCR, IPCR):(2)锚定PCR技术(Anchored PCR, APCR):( 3)不对称PCR技术(asymmetric PCR):( 4)反转录PCR技术(reverse transcription PCR, RT-PCR):(5)巢式PCR技术(NEST-PCR):(6)多重PCR技术(multi

20、plex PCR):(7)重组PCR技术:(8)原位PCR技术: (9)荧光定量实时PCR技术 技术,PCR技术的主要类型(1)反向PCR技术(Inverse P,(1)反向PCR技术(Inverse PCR, IPCR):,反向PCR是克隆已知序列旁侧序列的一种方法。一种在已知序列中无 切点的限制性内切酶消化基因组DNA。酶切片段自身环化。以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。 扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向

21、PCR获得未知片段 。,(1)反向PCR技术(Inverse PCR, IPCR):,cDNA末端快速扩增技术(rapid amplification of cDNA ends,RACE),通过RT-PCR技术由已知部分cDNA序列来得到完整的cDNA5和3端,包括单边PCR和锚定PCR。,1.基于蛋白质保守性的兼并引物的设计及ORF保守区RT-PCR克隆;2. 3-RACE3. 5-RACE,cDNA末端快速扩增技术(rapid amplificati,1.基于蛋白质保守性的兼并引物的设计及ORF保守区RT-PCR克隆;,利用ncbi搜索不同物种中同一目的基因的蛋白或cDNA编码的氨基酸序列

22、因为密码子的关系,不同的核酸序列可能表达的氨基酸序列是相同的,所以氨基酸序列才是真正保守的。 对所找到的序列进行多序列对。确定合适的保守区域 设计简并引物至少需要上下游各有一个保守区域,且两个保守区域相距50 400个aa为宜,使得pcr产物在1501200bp之间,最重要的是每一个保守区域至少有6个aa残基,因为每条引物至少18bp左右。利用软件设计引物 RAG,YCT,MAC,KGT,SCG,W AT,H ACT,B CGT,ACG, DA/G /T,N=ACG/T,密码子的兼并性氨基酸密码子数、,1.基于蛋白质保守性的兼并引物的设计及ORF保守区RT-PC,PCR及其衍生技术解析课件,R

23、T-PCR及定量RT-PCR(1)RT-PCR(reverse transcription-PCR)原理:先在逆转录酶的作用下、以mRNA为模板合成互补的cDNA(complementary DNA),再以cDNA为模板进行PCR反应。是一种快速、简便、敏感性极高的检测mRNA表达的方法。,PCR技术的主要类型,RT-PCR及定量RT-PCRPCR技术的主要类型,PCR及其衍生技术解析课件,常用的两种逆转录酶AMV(avian myeloblastosis virus):酶活性最适温度42MMLV(Moloney murine leukemia virus):酶活性最适温度37,常用的两种逆转

24、录酶,(2)定量RT-PCR(qRT-PCR):利用RT-PCR对mRNA水平进行半定量或绝对定量分析。,(2)定量RT-PCR(qRT-PCR):,半定量RT-PCR选用在组织中普遍表达、表达量比较恒定的管家基因mRNA作为内源性基因模板标准。管家基因mRNA和目的mRNA混合物共同进行逆转录,在各自的引物引导下扩增。计算出扩增后目的基因扩增子/管家基因扩增子的比值,从而达到半定量的目的。,半定量RT-PCR,实时荧光定量PCR,常规定量PCR技术: 对PCR扩增反应的终产物进行定量 重复性差 半定量实时定量PCR技术: 对PCR扩增反应中每一个循环的产物进行定量,实时荧光定量PCR常规定量

25、PCR技术:,实时荧光定量PCR原理,在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。,实时荧光定量PCR原理在PCR反应体系中加入荧光基团,利用荧,(1)Ct 值,是荧光定量PCR的一个重要的概念,C代表Cycle,t代表threshold。含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数。,(1)Ct 值是荧光定量PCR的一个重要的概念,C代表Cyc,(2)荧光域值(threshold)的设定,PCR反应的前15个循环的荧光信号作为荧光本底信号荧光域值是3-15个循环的荧光信号的标准偏差的10倍,即:thresho

26、ld = 10 SDcycle 3-15,(2)荧光域值(threshold)的设定PCR反应的前15,Ct值的确定,Ct值的确定,(3)Ct值与起始模板的关系,理想的PCR反应: X=X0*2n非理想的PCR反应: X=X0 (1+Ex)n n:扩增反应的循环次数 X:第n次循环后的产物量 X0:初始模板量 Ex:扩增效率,(3)Ct值与起始模板的关系理想的PCR反应:,在扩增产物达到阈值线时: XCt=X0 (1+Ex)Ct =M (1) XCt:荧光扩增信号达到阈值强度时扩增产物的量。 在阈值线设定以后,它是一个常数,我们设为M。方程式(1)两边同时取对数得: log M=log X0

27、(1+Ex)Ct (2)整理方程式(2)得: log X0= - log(1+Ex) *Ct+ log M (3) Log浓度与循环数呈线性关系,根据样品扩增达到域值的循环数即Ct值,就可计算出样品中所含的模板量。,在扩增产物达到阈值线时:,模板DNA量越多,荧光达到域值的循环数越少,即Ct值越小 Log浓度与循环数呈线性关系,通过已知起始拷贝数的标准品可作出标准曲线,根据样品Ct值,就可以计算出样品中所含的模板量,模板DNA量越多,荧光达到域值的循环数越少,即Ct值越小,确定未知样品的 C(t)值 通过标准曲线由未知样品的C(t)值推算出其初始量,Sample,确定未知样品的 C(t)值 Sample25,(4)荧光标记方法,可分为两种: 荧光探针(Taqman) 荧光染料(SYBR Green),(4)荧光标记方法可分为两种:,PCR及其衍生技术解析课件,PCR及其衍生技术解析课件,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号