流变学第二章ppt课件.ppt

上传人:牧羊曲112 文档编号:1347845 上传时间:2022-11-12 格式:PPT 页数:41 大小:717.50KB
返回 下载 相关 举报
流变学第二章ppt课件.ppt_第1页
第1页 / 共41页
流变学第二章ppt课件.ppt_第2页
第2页 / 共41页
流变学第二章ppt课件.ppt_第3页
第3页 / 共41页
流变学第二章ppt课件.ppt_第4页
第4页 / 共41页
流变学第二章ppt课件.ppt_第5页
第5页 / 共41页
点击查看更多>>
资源描述

《流变学第二章ppt课件.ppt》由会员分享,可在线阅读,更多相关《流变学第二章ppt课件.ppt(41页珍藏版)》请在三一办公上搜索。

1、第二章 基本物理量和高分子液体的基本流变性质,第一节张量初步知识 第二节基本物理量第三节粘度与法向应力差系数第四节非牛顿型流体的分类 第五节关于剪切粘度的深入讨论第六节关于“剪切变稀行为的说明第七节高分子液体弹性效应的描述第八节高分子液体的动态粘弹性,第一节 张量初步知识,高聚物流变学的发展,与现代数学的应用密切相关。特别是张量分析的数学概念。帮助建立矢量空间的思维能力,以便更好的理解流变学基本方程,以及一些加工应用方程的推导。全面学习和研究流变学,必须具有矢量代数、线性代数和张量运算的数学基础。,一、标量、矢量和张量标量没有任何方向性的纯数值的量。如:质量、体积、密度、温度、热导率、热扩散率

2、、比定压热容和能量。,矢量既有方向,又有大小的量。如:位移、速度和温度梯度等。,矢量,矢量用粗体代号或一个脚码代号表达 ai=a=axi+ayj+azk,i、j、k是平行于x、y、z轴的单位矢量,三个分量ax、ay、az是矢量在x、y、z轴上的投影,常把x、y、z写成1、2、3,张量物理学定义在一点处不同方向面上具有各个矢量值的物理量。流变学应用的是二阶张量,是“面量”。,张量是矢量的推广,张量数学定义在笛卡尔坐标系上一组有3n个有序矢量的集合。,指数n称为张量的阶数,二阶笛卡尔张量n=2,标量是零阶张量,矢量是一阶张量,张量的特征:,张量可以按定量关系在不同坐标系中转换,可以从一个直角坐标系

3、转换到另一个直角坐标系中,还可以转换到柱面坐标系(r,z)和球面坐标系(r,)中。张量分量可在各种坐标系中描述。张量分量具有一定的空间分布。张量具有可分解性和可加和性。,二阶张量用粗体字符或带大括号,或用双脚标表示,流变学中的参量如:应力ij、应变ij、剪切应力 、剪切速率 和应力速率等都是张量。,二、哈密尔顿算子,哈密尔顿算子是一个具有微分和矢量双重运算的算子。,哈密尔顿算子在运算中既服从矢量代数和矢量分析中所有法则;另一方面可按微分法则运算。,哈密尔顿算子表达式,流动与变形的材料在某个几何空间中每个点,都对应着物理量的一个确定值。对于这些标量和矢量确定的空间,即为标量场和矢量场。,a.标量

4、场的梯度梯度是个矢量,它的大小则为最大变化率的数值。它的方向为变化率最大的方向。,梯度是温度、浓度和密度等这些标量场不均匀的量度,记为grad.,或,梯度的基本运算法则有,C为常数,为导函数,b.矢量场的散度,散度为矢量场中任一点(x,y,z)通过所包围界面的通量(或流量),并除以此微元体积。例如:速度散度记为div,它是一标量。,在直角坐标系中,若,则,散度的基本运算法则为,div物理意义:单位时间单位体积内所产生的流体质量,流变学中最常见的是速度矢量场的散度。对于速度场散度divi=0,具有不可压缩特性。,常用于表示速度散度,常用于表示速度梯度,c.拉普拉斯算子,称为拉普拉斯算子,如:,三

5、、几个特殊的张量,a.单位张量单位张量的表达式,称为克朗内克符号,b.对称张量,二阶张量的下标i与j互换后所代表分量不变,称为二阶对称张量。即有ij=ji,二阶对称张量的矩阵表示形式中各元素关于对角线对称。因而只有六个独立元素。有:,C 反对称张量,二阶反对称张量的分量满足pij=-pji对角线各元素为零,从而只有三个独立分量,有,任何一个二阶张量均可唯一的分解为一个二阶对称张量和一个二阶反对称张量之和。,d.张量的代数运算,(1)张量相等两个张量相等,则各分量一一对应相等。若两个张量在某一笛卡尔坐标系中相等,则它们在任意笛卡尔坐标系中也相等。,笛卡尔坐标系,笛卡尔坐标系 (Cartesian

6、 coordinates) 就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。仿射坐标系和笛卡尔坐标系平面向空间的推广相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。,笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是4

7、93 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。,(2)同阶张量加减,两张量必须同阶才能加减。张量的加减为同一坐标系下,对应分量相加减。即,(3)张量数乘,张量Aij和标量的乘积,也称张量放大。就是把Aij的各个分量分别乘以。有Bij= Aij根据以上法则,流变学中常用的一种变换,(4)张量的单点积,张量Aij和张量Bij的单点积,按矩阵乘法运算,单点积的结果任为张量。有,第二节 基本物理量,流变学力学量基本物理量: 应力张

8、量、偏应力张量流变学运动学量: 形变张量、形变率张量、速度梯度张量基本流变学函数: 剪切粘度、法向应力差函数、拉伸粘度等,一、流变学动力学量基本物理量,应力产生原因:物体在外力或外力矩作用下会产生流动或(和)形变,同时为抵抗流动或形变,物体内部产生相应的应力。,应力的定义:材料内部单位面积上的响应力,单位为Pa或MPa(1Pa=1N.m-2),特点:在平衡状态下,物体所受的外应力与内应力数值相等。,(一)牵引力和应力张量,(1)牵引力,首先考察流变过程中物体内一点P的应力。在物体内取一小封闭曲面S,令 P点位于曲面 S 外表面的面元 S 上(法线为n,指向曲面外),考察封闭曲面S 外的物质通过

9、面元S 对曲面 S 内物质的作用力。设面元S 上的作用力为t,则定义,在P点处,通过P的每个方向都可求出相应的牵引力t,即过该点的三个正交独立曲面上的牵引力t1,t2,t3,于是可以将t1,t2,t3沿坐标轴方向(n1,n2,n3)分解,得到,(2)应力张量,写成张量式:,或者简单地,二阶张量 完整地描述了 P点的应力状态,称之为P点的应力张量。 其中第一个下标表明力的作用面(面元)的法线方向,第二个下标表示牵引力的分量序号,例如 T12指的是作用在第一个面元上的牵引力t1在n2方向的分量。,(3)应力张量的分量,所有分量都作用在相应面元的切线方向上,称为应力张量的剪切分量;剪切力的物理实质是

10、粘滞力或内摩擦力。,作用在相应面元的法线方向上的分量,称为应力张量的法向分量。法向力的物理实质是弹性力(拉力或压力)。应力张量可以完整地描述粘弹性物体在流变过程中的复杂内应力状态。,按Cauchy应力定律,在平衡时 ,物体所受的合外力与合外力矩均等于零。于是得知,平衡时,应力张量中沿主对角线对称的剪切分量应相等,即,平衡时应力张量为对称张量,其中只有六个独立分量。三个为法向应力分量:T11,T22,T33三个为剪应力分量: T12=T21 T13=T31 T23=T32,应力张量 应力是作用在单位体积上的表面力。 对于整个体积元,应以9个应力分量来表示其流变学动力学量。 总的应力张量可以分为各

11、向同性张量和偏张量。 各向同性张量引起体积改变, 偏张量引起形状改变。,根据力的性质不同,应力张量可以分解表示。其中最常见的一种分解形式如下:,(二)、偏应力张量,在平衡状态下,+,流体静力学,偏应力张量,P为各向同性压力(静水压力),处在任何状态下的流体内部都具有各向同性压力。,Tij=-pij+ij,它作用在曲面法向上,且沿曲面任何法向的值相等,负号表示压力方向指向封闭曲面的内部。,偏应力张量,各向同性压力,偏应力张量是应力张量中最重要的部分,直接关系到物体流动和形变(粘性形变和弹性形变)的描写。,与应力张量相似也是对称张量,只有六个独立分量。三个为法向应力,三个为剪切应力分量:,例1 静

12、止液体的内应力,静止液体内只有法向应力(实际上就是各向同性压力),无剪切应力。故各应力分量为,任何静止的平衡液体,或是静止或流动的无粘流体都处于这种应力状态。,例2 均匀拉伸或压缩,设流体只受到一个方向的拉力或压力,除此之外不再有任何其他作用力,各应力分量为:,此时体系处于沿 x1方向的均匀拉伸或压缩状态。0为拉伸,0 为压缩。,材料在单轴拉伸流场中(纺丝过程)处于这种应力状态。,例3 均匀剪应力,设流体的应力状态为:只有剪切分量T12=T21=,=常数,而所有其他剪切分量为零。这种剪应力称均匀剪应力。当流体沿 x1方向流动,而在x2方向分层流动的简单剪切常数的平面上受到剪切时,例如在沿x1方

13、向流动的简单剪切流场中,可能发生均匀剪应力。,简单剪切流场发生在许多仪器、设备、模具内的材料流动场中,是流变学研究的最重要的流动形式。,考察在简单剪切流场中牛顿流体所受的应力的情况,牛顿流体只有粘性而无弹性,因此在应力张量中与弹性形变联系的各法向应力分量相等,均可归于各向同性压力。而偏应力张量中,各法向应力分量等于0。应力张量T分解为:,对于牛顿性流体偏应力张量中只有一个独立分量剪切应力分量,故只需定义一个函数粘度函数就可以完全描述其力学状态。,高分子液体是粘弹性流体,要完整描述高分子液体的应力状态,偏应力张量中至少需要4个应力分量,偏应力张量中法向应力分量与各向同性压力的大小有关,两种结果中各向同性压力的值不同,由此导致偏应力张量中法向应力分量的值不同。但不管应力张量如何分解,偏应力张量中两个法向应力分量的差值始终保持不变。,我们就可以定义两个法向应力差函数来描写材料弹性形变行为:,N1、N2加上粘度函数,用此三个函数就可以完整描写简单剪切流场中高分子流体的应力状态和粘弹性。,思考题,有一试样尺寸为3cm2cm1cm的长方体,加上两种均匀的应力,其应力张量为:(1)加上的分别是什么性质的应力?(2)在试样的各个面上受到什么力(大小、方向和性质)?,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号