《晶格的基本类型》PPT课件.ppt

上传人:小飞机 文档编号:1388229 上传时间:2022-11-17 格式:PPT 页数:26 大小:1.38MB
返回 下载 相关 举报
《晶格的基本类型》PPT课件.ppt_第1页
第1页 / 共26页
《晶格的基本类型》PPT课件.ppt_第2页
第2页 / 共26页
《晶格的基本类型》PPT课件.ppt_第3页
第3页 / 共26页
《晶格的基本类型》PPT课件.ppt_第4页
第4页 / 共26页
《晶格的基本类型》PPT课件.ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《《晶格的基本类型》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《晶格的基本类型》PPT课件.ppt(26页珍藏版)》请在三一办公上搜索。

1、第二节 晶格的基本类型,本节主要内容:,1.2.1 三维晶格的分类,1.2.2 二维晶格的分类,补充内容: 晶体的对称性,1. 对称性与对称操作,对称操作所依赖的几何要素。,1). 对称操作与线性变换,经过某一对称操作,把晶体中任一点 变为 可以用线性变换来表示。,补充内容: 晶体的对称性,对称性:,经过某种动作后,晶体能够自身重合的特性。,对称操作:,使晶体自身重合的动作。,对称素:,操作前后,两点间的距离保持不变,,O点和X点间距与O点和 点间距相等。,I为单位矩阵,即:,或者说A为正交矩阵,其矩阵行列式 。,2). 简单对称操作(旋转对称、中心反映、镜象、旋转反演对称),(1)旋转对称(

2、Cn,对称素为线),若晶体绕某一固定轴转 以后自身重合,则此轴称为n次(度)旋转对称轴。,下面我们计算与转动对应的变换矩阵。,当OX绕Ox1转动角度时,图中,若OX在Ox2x3平面上投影的长度为R,则,晶体中允许有几度旋转对称轴呢?,设B1ABA1是晶体中某一晶面上的一个晶列,AB为这一晶列上相邻的两个格点。,若晶体绕通过格点A并垂直于纸面的u轴顺时针转角后能自身重合,则由于晶体的周期性,通过格点B也有一转轴u。,是 的整数倍,,相反若逆时针转 角后能自身重合,则,是 的整数倍,,晶体中允许的旋转对称轴只能是1,2,3,4,6度轴。,综合上述证明得:,正五边形沿竖直轴每旋转720恢复原状,但它

3、不能重复排列充满一个平面而不出现空隙。因此晶体的旋转对称轴中不存在五次轴,只有1,2,3,4,6度旋转对称轴。,(2)中心反映(i,对称素为点),取中心为原点,经过中心反映后,图形中任一点,变为,(3)镜象(m,对称素为面),如以x3=0面作为对称面,镜象是将图形的任何一点,变为,(4)旋转-反演对称,若晶体绕某一固定轴转 以后,再经过中心反演,晶体自身重合,则此轴称为n次(度)旋转-反演对称轴。,旋转-反演对称轴只能有1,2,3,4,6度轴。,旋转-反演对称轴用 表示。,旋转-反演对称轴并不都是独立的基本对称素。如:,立方体、正四面体、金刚石结构及六棱柱体的对称操作,1,2,3,4,6 度旋

4、转对称操作。,1,2,3,4,6度旋转反演对称操作。,(3)中心反映:i。,(4)镜象反映:m。,C1,C2,C3,C4,C6 (用熊夫利符号表示),S1,S2,S3,S4,S6(用熊夫利符号表示),点对称操作:,(2)旋转反演对称操作:,(1)旋转对称操作:,独立的对称操作有8种,即1,2,3,4,6,i,m, 。 或C1,C2,C3,C4,C6 ,Ci,Cs,S4。,所有点对称操作都可由这8种操作或它们的组合来完成。一个晶体的全部对称操作构成一个群,每个操作都是群的一个元素。对称性不同的晶体属于不同的群。由旋转、中心反演、镜象和旋转-反演点对称操作构成的群,称作点群。,理论证明,所有晶体只

5、有32种点群,即只有32种不同的点对称操作类型。这种对称性在宏观上表现为晶体外形的对称及物理性质在不同方向上的对称性。所以又称宏观对称性。,如果考虑平移,还有两种情况,即螺旋轴和滑移反映面。,(5)n度螺旋轴:若绕轴旋转2/n角以后,再沿轴方向平移l(T/n),晶体能自身重合,则称此轴为n度螺旋轴。其中T是轴方向的周期, l是小于n的整数。 n只能取1、2、3、4、6。,(6)滑移反映面:若经过某面进行镜象操作后,再沿平行于该面的某个方向平移T/n后,晶体能自身重合,则称此面为滑移反映面。 T是平行方向的周期, n可取2或4。,点对称操作加上平移操作构成空间群。全部晶体构有230种空间群,即有

6、230种对称类型。,1.2.1 三维晶格的分类,根据不同的点对称性,将晶体分为7大晶系,14种布拉维晶格。,7大晶系的特征及布拉维晶格如下所述:,1.三斜晶系:,2.单斜晶系:,3.三角晶系:,简单三斜(1),简单单斜(2),底心单斜(3),三角(4),4.正交晶系:,简单正交(5),底心正交(6)体心正交(7),面心正交(8),5.四角系:(正方晶系),简单四角(9),体心四角(10),6.六角晶系:,六角(11),7.立方晶系:,简立方(12),体心立方(13),面心立方(14),简单三斜(1),简单单斜(2),底心单斜(3),1.三斜晶系:,2.单斜晶系:,3.三角晶系:,三角(4),4

7、.正交晶系:,简单正交(5),底心正交(6),体心正交(7),面心正交(8),5.四角系:(正方晶系),体心四角(10),简单四角(9),6.六角晶系:,六角(11),7.立方晶系:,简立方(12),体心立方(13),面心立方(14),1. 晶体表面的几何结构, 晶体总是存在着表面,认识晶体表面的结构进一步 研究晶体表面的性质, 垂直于晶体表面的方向为Z轴,X和Y轴在晶体表面上 晶体在Z轴方向上的周期性被破坏 而在XY平面内仍然保持着周期性,用二维布拉伐格子来表征晶体表面的空间周期性,二维布拉伐格子, 其中 为基矢, 为整数,1.2.2 二维晶格的分类, 面心立方晶体在(100)方向上表面二维布拉伐格子是正方格子,在(111)方向上表面二维布拉伐格子是密排结构,晶体表面二维晶格的点群表示,晶格周期性在Z轴方向的限制,二维晶格的对称素只有6个,垂直于表面的n重转轴 5个,垂直于表面的镜面反演m 1个, 由6种对称素可以组成10种二维点群,按照点群对基矢 的要求划分,二维格子有4个晶系,5种布拉伐格子,2. 二维晶格的分类,二维晶格的晶系和布拉伐格子,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号