《北师大版初三数学上册《46利用相似三角形测高》课件.ppt》由会员分享,可在线阅读,更多相关《北师大版初三数学上册《46利用相似三角形测高》课件.ppt(28页珍藏版)》请在三一办公上搜索。
1、4.6 利用相似三角形测高,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,4.6 利用相似三角形测高第四章 图形的相似导入新课讲授新,1.通过测量旗杆的高度的活动,并复习巩固相似三角形有 关知识.(重点)2.灵活运用三角形相似的知识解决实际问题.(难点),学习目标,1.通过测量旗杆的高度的活动,并复习巩固相似三角形有学习目标,世界上最高的树 红杉,导入新课,世界上最高的树导入新课,乐山大佛,乐山大佛,台北101大楼,台北101大楼,怎样测量这些非常高大物体的高度?,怎样测量这些非常高大物体的高度?,胡夫金字塔是埃及现存规模最大的金字塔,被誉为“世界古代八大奇迹之一”,古希腊数学家
2、,天文学家泰勒斯曾经利用相似三角形的原理测量金字塔的高度,你能根据图示说出他测量金字塔的原理吗?,讲授新课,胡夫金字塔是埃及现存规模最大的金字塔,被誉为“,例1:如下图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.,我们来试着用学过的知识解决前面提出的问题,例1:如下图,如果木杆EF长2 m,它的影长FD为3 m,测,解:BFED,BAO=EDF, 又AOB=DFE=90, ABODEF, = , = , BO=134.,因此金字塔高134 m.,解:BFED,BAO=EDF,因此金字塔高,物1高 :物2高 = 影1长 :影2长,测高方法一:,测量不能
3、到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.,物1高 :物2高 = 影1长 :影2长测高方法一: 测,例2:如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.,解析:人、树、标杆是相互平行的,添加辅助线,过点A作ANBD交ID于N,交EF于M,则可得AEMACN.,A,E,C,D,F,B,N,例2:如图,小明为了测量一棵树CD的高度,他在距树24m处立,A,E,C,D,F,B,N,解:过点A作ANBD交
4、CD于N,交EF于M,因为人、标杆、树都垂直于地面,ABF=EFD=CDF=90,ABEFCD, EMA=CNA.EAM=CAN,AEMACN , .AB=1.6m , EF=2m , BD=27m , FD=24m , , CN=3.6(m),CD=3.6+1.6=5.2(m).故树的高度为5.2m.,M,AECDFBN解:过点A作ANBD交CD于N,交EF于M,,测高方法二:,测量不能到达顶部的物体的高度,也可以用“利用标杆测量高度”的原理解决.,测高方法二: 测量不能到达顶部的物体的高度,也可以用“,例3:为了测量一棵大树的高度,某同学利用手边的工具(镜子、皮尺)设计了如下测量方案:如图
5、,在距离树AB底部15m的E处放下镜子;该同学站在距离镜子1.2m的C处,目高CD为1.5m;观察镜面,恰好看到树的顶端.你能帮助他计算出大树的大约高度吗?,解:1=2,DCE=BAE=90,DCEBAE. ,得 BA=18.75m.因此,树高约为18.75m.,D,B,A,C,E,2,1,例3:为了测量一棵大树的高度,某同学利用手边的工具(镜子、皮,测高方法三:,测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.,测高方法三: 测量不能到达顶部的物体的高度,也可以用“,例3:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共
6、线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R如果测得QS=45 m,ST=90 m,QR=60 m,求河的宽度PQ.,例3:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点,45m,90m,60m,解:, QRST,PQRPST,PQ=90m.,45m90m60m解: QRSTPQRPSTPQ,(1)根据题意画出_;(2)将题目中的已知量或已知关系转化为示意图中的 _;(3)利用相似三角形建立线段之间的关系,求出_;(4)写出_.,示意图,已知线段、已知角,未知量,答案,利用三角形相似解决实际问题的一般步骤:,归纳总结
7、,(1)根据题意画出_;示意图已知线段、已,利用三角形相似测高的模型:,利用三角形相似测高的模型:,1. 铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高_m.,8,2.某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高为_.,4米,当堂练习,1. 铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0,3.如图 ,利用标杆BE测量建筑物的高度。如果标杆BE高1.2m,测得AB=1.6m,BC=12.4m,楼高CD是多少?,3.如图 ,利用标杆BE测量建筑物的高度。如果标杆BE高1.,解:, EBCD,ABEACD,CD=10.5m.,EBAC
8、, CDAC,1.2m,12.4m,1.6m,解: EBCDABEACDCD=10.5m.E,4.如图,左、右并排的两棵大树的高分别是 AB =8 m和 CD=12 m,两树底部的距离 BD=5 m,一个人估计自己的眼睛距地面 1.6 m她沿着正对这两棵树的一条水平直路 l 从左向右前进,当她与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶点 C 了?,4.如图,左、右并排的两棵大树的高分别是 AB =8 m和,解:如图,假设观察者从左向右走到点 E 时,她的眼睛的位置点 E 与两棵树的顶端 A,C 恰在一条直线上ABl, CDl, ABCDAEHCEK= ,即 = = 解得EH=8
9、(m)由此可知如果观察者继续前进,当她与左边的树距离小于 8 m 时,由于这棵树的遮挡,她看不到右边树的顶端 C,解:如图,假设观察者从左向右走到点 E 时,她的眼睛的位置点,5.如图,为了估算河的宽度,我们可以在河的对岸选定一个目标作为点A,再在河的这一边选定点B和点C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D,此时如果测得BD=118米,DC=61米,EC=50米,求河的宽度AB.(精确到0.1米),5.如图,为了估算河的宽度,我们可以在河的对岸选定一个目标作,解:ADB=EDC ABD=ECD=90,答:河的宽度AB约为96.7米.,ABDECD(两角分别相等
10、的两个三角形相似),,解得,解:ADB=EDC答:河的宽度AB约为96.7米.,6.某同学想利用树影测量树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高多少米?,E,D,6.4,1.2,?,1.5,1.4,A,B,C,解:作DEAB于E得AE=8米,AB=8+1.4=9.4米,物体的影长不等于地上的部分加上墙上的部分,6.某同学想利用树影测量树高.他在某一时刻测得小树高为1.5,相似三角形的应用,测量高度问题,课堂小结,测量河宽问题,相似三角形的应用测量高度问题课堂小结测量河宽问题,