《竖直平面内的圆周运动临界问题课件.ppt》由会员分享,可在线阅读,更多相关《竖直平面内的圆周运动临界问题课件.ppt(37页珍藏版)》请在三一办公上搜索。
1、竖直平面内的临界问题,1,t课件,1、轻绳与轨道模型 :,能过最高点的临界条件:,小球在最高点时绳子的拉力(轨道对球的压力)刚好等于0,小球的重力充当圆周运动所需的向心力。,2,t课件,小结一:没有支撑的物体 细绳拴小球,圆滑轨道上滑动的小球,1、临界条件: 绳子或轨道对小球没有力的作用:(即:T=0)有 所以:,2、能通过最高点的条件:,3,t课件,例:如图所示,一质量为m的小球,用长为L细绳系住,使其在竖直面内作圆周运动。若过小球恰好能通过最高点,则小球在最高点的速度为多少?小球的受力情况如何?,4,t课件,例:如图所示,一质量为m的小球,在半径为R 光滑轨道上,使其在竖直面内作圆周运动。
2、若过小球恰好能通过最高点,则小球在最高点的速度为多少?(小球的受力情况如何?),5,t课件,例:如图所示,质量为m的小球在竖直平面内的光滑圆轨道上做圆周运动圆半径为R,小球经过圆环最高点时刚好不脱离圆轨则其通过最高点时( )A小球对圆环的压力大小等于mgB小球的向心力等于重力 C小球的线速度大小等于D小球的向心加速度大小等于g,BCD,6,t课件,例:用长为l的细绳,拴着质量为m的小球,在竖直平面内做圆周运动,则下列说法中正确的是( )A.小球在最高点所受的向心力一定是重力B.小球在最高点绳的拉力可能为零C.小球在最低点绳子的拉力一定大于重力D.若小球恰好能在竖直平面内做圆周运动,则它在最高点
3、的速率为零,7,t课件,例:质量为m的小球在竖直平面内的圆形轨道的内侧运动如图所示,经过最高点而不脱离轨道的速度临界值是v,当小球以2v的速度经过最高点时,对轨道的压力值是( )A.0B.mgC.3mgD.5mg,8,t课件,例:一根绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量m0.5 kg,绳长l60 cm,g取10 m/s2,求:(1)最高点水不流出的最小速率?(2)水在最高点速率v3 m/s时,水对桶底的压力?,9,t课件,例:如图所示,一个半径为R的光滑半圆形轨道放在水平面上,一个质量为m的小球以某一初速度冲上轨道,当小球将要从轨道上沿水平方向飞出时,轨道对小球的压力恰好为零,
4、则小球落地点C距B点多远?(A、B在同一竖直线上),10,t课件,2、轻杆和圆管模型 :,能过最高点的临界条件:,杆(管的下壁)对球的支持力FN=mg,11,t课件,小结二:有支撑的物体小球与杆相连,球在光滑封闭管中运动,2、小球过最高点时,轻杆对小球的弹力情况:,B、当 时,杆对小球有指向圆心的拉力,其大小随速度的增大而增大。,C、 时,对小球的支持力方向竖直向上,大小随速度的增大而减小,取值范围是:,A、当 时,杆对小球的支持力,杆,管道,12,t课件,例:如图所示,细杆的一端与一小球相连,可绕过O的水平轴自由转动。现给小球一初速度,使它做圆周运动。图中a、b分别表示小球轨道的最低点和最高
5、点,则杆对球作用力可能是( )A、a处为拉力,b处为拉力B、a处为拉力,b处为推力C、a处为推力,b处为拉力D、a处为推力,b处为推力,a,b,A、B,13,t课件,例:长度为L0.5m的轻质细杆OA,A端有一质量为m3.0kg的小球,如图5所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0ms,g取10ms2,则此时细杆OA受到()A、6.0N的拉力B、6.0N的压力C、24N的拉力D、24N的压力,B,14,t课件,例:长L0.5m,质量可以忽略的的杆,其下端固定于O点,上端连接着一个质量m2kg的小球A,A绕O点做圆周运动(同图5),在A通过最高点,试讨论在下列
6、两种情况下杆的受力:当A的速率v11ms时:当A的速率v24ms时:,15,t课件,例、长为0.6m的轻杆OA(不计质量),A端插个质量为2.0kg的物体,在竖直平面内绕O点做圆周运动,当球达到最高点的速度分别为3m/s, m/s,2m/s时,求杆对球的作用力各为多少?,16,t课件,例:如图所示,质量m=0.2kg的小球固定在长为0.9m的轻杆的一端,杆可绕点的水平轴在竖直平面内转动,g=10m/s2,求:,(1)小球在最高点的速度能否等于零?(2)当小球在最高点的速度为多大时,小球对杆的作用力为零?(3)当小球在最高点的速度分别为m/s和1.5m/s时,杆对小球的作用力的大小和方向,17,
7、t课件,练习习题,18,t课件,7.质量为m的小球在竖直平面内的圆形轨道的内侧运动如图589所示,经过最高点而不脱离轨道的速度临界值是v,当小球以2v的速度经过最高点时,对轨道的压力值是( )A.0B.mgC.3mgD.5mg,19,t课件,2、用长为l的细绳,拴着质量为m的小球,在竖直平面内做圆周运动,则下列说法中正确的是( )A.小球在最高点所受的向心力一定是重力B.小球在最高点绳的拉力可能为零C.小球在最低点绳子的拉力一定大于重力D.若小球恰好能在竖直平面内做圆周运动,则它在最高点的速率为,20,t课件,7 如下图,质量为0.5 kg的小杯里盛有1 kg的水,用绳子系住小杯在竖直平面内做
8、“水流星”表演,转动半径为lm,小杯通过最高点的速度为4 m/s,g取10 m/s2,求:(1)在最高点时,绳的拉力?(2)在最高点时水对小杯底的压力? (3)为使小杯经过最高点时水不流出,在最高点时最小速率是多少?,21,t课件,图所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为(),22,t课件,杂技演员表演“水流星”,在长为1.6 m的细绳的一端,系一个与水的总质量为m0.5 kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通
9、过最高点时的速率为4 m/s,则下列说法正确的是(g10 m/s2)()A“水流星”通过最高点时,有水从容器中流出B“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C“水流星”通过最高点时,处于完全失重状态,不受力的作用D“水流星”通过最高点时,绳子的拉力大小为5 N,23,t课件,小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如右图所示已知握绳的手离地面高度为d,手与球之间的绳长为3d/4,重力加速度为g.忽略手的运动半径和空气阻力(1)求绳断时球的速度大小v
10、1和球落地时的速度大小v2(2)问绳能承受的最大拉力多大?选做(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?,24,t课件,补充题,25,t课件,例1:如图所示,细杆的一端与一小球相连,可绕过O的水平轴自由转动。现给小球一初速度,使它做圆周运动。图中a、b分别表示小球轨道的最低点和最高点,则杆对球作用力可能是( )A、a处为拉力,b处为拉力B、a处为拉力,b处为推力C、a处为推力,b处为拉力D、a处为推力,b处为推力,a,b,A、B,26,t课件,例2 长度为L0.5m的轻质细杆OA,A端有一质量为m3.0kg的小球
11、,如图5所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0ms,g取10ms2,则此时细杆OA受到()A、6.0N的拉力B、6.0N的压力C、24N的拉力D、24N的压力,B,27,t课件,例3:长L0.5m,质量可以忽略的的杆,其下端固定于O点,上端连接着一个质量m2kg的小球A,A绕O点做圆周运动(同图5),在A通过最高点,试讨论在下列两种情况下杆的受力:当A的速率v11ms时:当A的速率v24ms时:,28,t课件,如图所示,固定在竖直平面内的光滑圆弧形轨道ABCD,其A点与圆心等高,D点为轨道最高点,DB为竖直线,AC为水平线,AE为水平面,今使小球自A点正上
12、方某处由静止释放,且从A点进入圆形轨道运动,通过适当调整释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后( )A会落到水平面AE上 B一定会再次落到圆轨道上C可能会落到水平面AE上 D可能会再次落到圆轨道上,A,29,t课件,二、在竖直平面内作圆周运动的临界问题,在水平面上做圆周运动的物体,当角速度变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。,30,t课件,经典案例,经典案例(9分)一细杆与水桶相连,水桶中装有水,水桶与细杆一起在竖直平面内做圆周运动
13、,如图所示,水的质量m0.5 kg,水的重心到转轴的距离L60 cm.(1)若在最高点水不流出来,求桶的最小速率(2)若在最高点的水桶速率v3 m/s,求水对桶底的压力(g取9.8 m/s2),【解析】(1)在最高点水恰好不流出的条件:mg (3分) 得v02.42 m/s.(1分)(2)由F 可知,当v增大时,物体做圆周运动所需的向心力也随之增大,由于v3 m/s2.42 m/s,因此,当水在最高点时,水自身的重力已不足以提供水做圆周运动所需的向心力,此时桶底对水有一向下的压力,设为FN,则由牛顿第二定律有FNmg (3分) FN mg2.6 N(1分)根据牛顿第三定律可知,水对桶底的压力大
14、小为2.6 N,方向竖直向上(1分),mv02/L,mv2/R,mv2/L,mv2/L,31,t课件,1.绳系着装水的水桶,在竖直平面内做圆周运动,水的质量m = 0.5kg,绳长L = 40cm,求:()为使桶在最高点时水不流出,桶的最小速率?()桶在最高点速率v = 4m/s时,水对桶底的压力?,【学以致用】,32,t课件,练习:如图所示,轻杆的一端固定一质量为m的小球,并以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,以下说法正确的是:,A、小球过最高点时的起码速度为 ; B、小球过最高点时,杆所受的弹力可以等于零; C、小球过最高点时,杆对球的作用力可以与球所受重力方向 相反,
15、此时重 力 一定大于杆对球的作用力; D、小球过最高点时,杆对球作用力一定与小球所受重力方向相反。,BC,33,t课件,例:长为0.5m,质量可忽略的杆,其下端固定于O点,上端连有质量m=2kg的小球,它绕O点做圆周运动,当通过最高点时,如图所示,求下列情况下,杆受到的力(说明是拉力还是压力): (1)当v1=1m/s时; (2)v2=4m/s时。(g取10m/s2),应用:四、杆拉小球竖直面转动,34,t课件,例、质量为1kg的小球沿半径为20cm的圆环在竖直平面内做圆周运动,如图所示,求 (1)小球在圆环的最高点A不掉下来的最小速度是多少?此时小球的向心加速度是多少? (2)若小球仍用以上
16、的速度经过圆环的最高点A,当它运动到圆环的最低点B时,对圆环的压力是多少?此时小球的向心加速度是多少?,巩固应用:,35,t课件,例、长为0.6m的轻杆OA(不计质量),A端插个质量为2.0kg的物体,在竖直平面内绕O点做圆周运动,当球达到最高点的速度分别为3m/s, m/s,2m/s时,求杆对球的作用力各为多少?,巩固应用,36,t课件,例2:如图所示,质量m=0.2kg的小球固定在长为0.9m的轻杆的一端,杆可绕点的水平轴在竖直平面内转动,g=10m/s2,求:,(1)小球在最高点的速度能否等于零?(2)当小球在最高点的速度为多大时,小球对杆的作用力为零?(3)当小球在最高点的速度分别为m/s和1.5m/s时,杆对小球的作用力的大小和方向,37,t课件,