《组合与组合数公式ppt课件.ppt》由会员分享,可在线阅读,更多相关《组合与组合数公式ppt课件.ppt(38页珍藏版)》请在三一办公上搜索。
1、复习回顾:,【排列】从n个不同元素中选出m(mn)个元素,并按一定的顺序排成一列.【关键点】1、互异性(被选、所选元素互不相同) 2、有序性(所选元素有先后位置等顺序之分)【排列数】所有排列总数,组合与组合数公式,问题一:现有甲、乙、丙3个足球队,进行主客场双循环比赛,共需比赛多少场?,问题二:现有甲、乙、丙3个足球队,进行单循环比赛,共需比赛多少场?,甲、乙;甲、丙;乙、丙,3,情境创设,有顺序,无顺序,一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,排列与组合的概念有什么共同点与不同点?,概念讲解,组合定义:,组合定义: 一般地,从n个不同
2、元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,排列定义: 一般地,从n个不同元素中取出m (mn) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.,共同点: 都要“从n个不同元素中任取m个元素”,不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.,概念讲解,思考一:ab与ba是相同的排列还是相同的组合?为什么?,思考二:两个相同的排列有什么特点?两个相同的组合呢?,概念理解,构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.,思考三:组合与排列有联系吗?,判断下列问题是组合问题还是排列问题?,(1)设集
3、合A=a,b,c,d,e,则集合A的含有3个元素的子集有多少个?,(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?,有多少种不同的火车票价?,组合问题,排列问题,(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?,组合问题,(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?,组合问题,(5)从4个风景点中选出2个游览,有多少种不同的方法?,组合问题,(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?,排列问题,组合问题,组合是选择的结果,排列是选择后再排序的结果.,1.从 a , b , c三个不同的元素中取出两个
4、元素的所有组合分别是:,ab , ac , bc,2.已知4个元素a , b , c , d ,写出每次取出两个元素的所有组合.,ab , ac , ad , bc , bd , cd,(3个),(6个),概念理解,从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.,如:从 a , b , c三个不同的元素中取出两个元素的所有组合个数是:,如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个元素的所有组合个数是:,概念讲解,组合数:,注意: 是一个数,应该把它与“组合”区别开来,1.写出从a,b,c,d 四个元素中任取三个元素
5、的所有组合。,abc , abd , acd , bcd .,练一练,组合,排列,abc bac cabacb bca cba,abd bad dabadb bda dba,acd cad dacadc cda dca,bcd cbd dbcbdc cdb dcb,不写出所有组合,怎样才能知道组合的种数?,你发现了什么?,组合数公式,排列与组合是有区别的,但它们又有联系,根据分步计数原理,得到:,因此:,一般地,求从 个不同元素中取出 个元素的排列数,可以分为以下2步:,第1步,先求出从这 个不同元素中取出 个元素的组合数 ,第2步,求每一个组合中 个元素的全排列数 ,这里 ,且 ,这个公式叫
6、做组合数公式,概念讲解,组合数公式:,从 n 个不同元中取出m个元素的排列数,概念讲解,(2)列出所有冠亚军的可能情况.,(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙,(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,解:,例题分析,例3 求证:,例1:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。按照足球比赛规则,比赛时一个足球队的上场队员是11人。问: (1)这位教练从这17名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?,例4:在100件产品中有98件合格品,2件次
7、品。产品检验时,从100件产品中任意抽出3件。(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?(4)抽出的3件中恰好有1件是次品的概率是多少?(5)抽出的3件中至少有1件是次品的概率是多少?,说明:“至少”“至多”的问题,通常用分类法或间接法求解。(见课本P280),变式练习,按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选;(2)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;(4)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人
8、当选;,例5、某医院有内科医生12名,外科医生8名,现要派5人参加支边医疗队,至少要有1名内科医生和1名外科医生参加,有多少种选法?,例6:(1)平面内有9个点,其中4个点在一条直线上,此外没有3个点在一条直线上,过这9个点可确定多少条直线?可以作多少个三角形?(2)空间12个点,其中5个点共面,此外无任何4个点共面,这12个点可确定多少个不同的平面?,例7、有翻译人员11名,其中5名仅通英语、4名仅通法语,还有2名英、法语皆通。现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少张不同的名单?,例8、8双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求满足如下条件各有多少种情
9、况:(1)4只鞋子恰有两双;(2) 4只鞋子没有成双的;(3) 4只鞋子只有一双。,课堂练习:,2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为 。,3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为( ),4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有( ),1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有 种 。,9,9,C,D,一个口袋内装有大小相同的7个白球和1个
10、黑球 从口袋内取出3个球,共有多少种取法? 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? 从口袋内取出3个球,使其中不含黑球,有多少种取法?,解:(1),性质2,我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球因此根据分类计数原理,上述等式成立,我们发现:,为什么呢,性质2,注:1 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与原组合数上标较大的相同的一个组合数 2 此性质的作用:恒等变形,简化运算在今后学习“二项式定理”时,我们会看到它的主要应用,例计算:,例2 求证:,一、等分组与不等分组问题,例3、6
11、本不同的书,按下列条件,各有多少种不同的分法;(1)分给甲、乙、丙三人,每人两本;(2)分成三份,每份两本;(3)分成三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙3人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙3人,每人至少一本;(6)分给5个人,每人至少一本;(7)6本相同的书,分给甲乙丙三人,每人至少一本。,练习:(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?,解: (1),(2),例4、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,
12、可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有( )(A) 种(B) 种 (C) 种 (D) 种,二、不相邻问题插空法,三、混合问题,先“组”后“排”,例5 对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?,解:由题意知前5次测试恰有4次测到次品,且第5次测试是次品。故有: 种可能。,练习:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法_种.,解:采用先组后排方法:,2、3 名医生和 6 名护士
13、被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?,解法一:先组队后分校(先分堆后分配),解法二:依次确定到第一、第二、第三所学校去的医生和护士.,四、分类组合,隔板处理,例6、 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?,分析:问题相当于把个30相同球放入6个不同盒子(盒子不能空的)有几种放法?这类问可用“隔板法”处理.解:采用“隔板法” 得:,练习: 1、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?,2、从一楼到二楼的楼梯有17级,上楼时可以一步走一级,也可以一步走两级,若要求11步走完,则有多少种不同的走法?,排列,小结,作业:,