《北京某工程全套施工方案与技术.docx》由会员分享,可在线阅读,更多相关《北京某工程全套施工方案与技术.docx(56页珍藏版)》请在三一办公上搜索。
1、1. 工程概况某工程占地面积25公倾。根据岩土工程勘察报告提供的方案资料,拟建建筑物包括2024层写字楼、1418层公寓、商场、俱乐部及纯地下室组成。建筑面积约140000m2;拟建楼座均设3层地下室,于主楼周边均为纯地下建筑,并与主楼地下室底板连成一整体;拟建建筑物0.00标高为51.06m,场地自然标高为50.2351.49m;采用筏板基础,基础埋深约14.60m。2. 场地工程地质与水文地质条件2.1 地层条件根据甲方提供的岩土工程勘察报告,拟建场地地层如下:人工堆积层。该层分布于地表,厚度为1.03.0m,其下即为第四纪沉积层。此层包括粘质粉土、砂质粉土填土层,房渣土1层,卵石填土2层
2、。于标高47.0449.23m以下以粘质粉土、砂质粉土层为主,夹有粘质粉土、砂质粉土1层及粉质粘土、重粉质粘土2层。此大层厚度为1.85.2m。于标高43.746.63m以下为粉细砂层。此大层厚度为0.43.1m。于标高42.5044.53m以下为粉质粘土、粘质粉土层,含粉质粘土 1 层,砂质粉土、粘质粉土2层及粉、细砂3层。此大层厚度为1.86.0m。5.于标高37.9341.99m以下为粉质粘土、粘质粉土层,含重粉质粘土、粘土1层,粘质粉土、重粉质粘土2层,粘质粉土、砂质粉土2层及细砂4层。此大层厚度为4.010.0m。6.于标高29.3332.12m以下为粉细砂层,含粘质粉土、粉质粘土1
3、层,圆砾2层。此大层厚度为5.07.0m。7.于标高24.4425.64m以下为卵石层,含圆砾1层,细中砂2层,粘质粉土3层。此大层厚度为8.09.0m。2.2 场地地下水根据岩土工程勘察报告提供的资料,本场地地表以下有三层地下水:第一层地下水为上层滞水,水位标高为46.2748.28m(埋深2.204.86m);第二层地下水为层间潜水,水位标高为37.9341.27m(埋深10.0013.00m);第三层地下水为承压层间潜水,水位标高为26.4628.13m(埋深22.8024.60m)。场区内的地下水对混凝土结构及钢筋混凝土结构中的钢筋均无腐蚀性。3. 基坑支护方案设计3.1 设计依据 甲
4、方提供的岩土工程勘察报告;建筑基坑支护技术规程JGJ120-99;北京地区建筑地基基础勘察设计规范DBJ01-501-92;混凝土结构设计规范GB50010-2002;土层锚杆设计与施工规范CECS22-89;建筑桩基技术规范JGJ94-94;钢筋焊接及验收规程JGJ18-2003;建筑地基基础设计规范(GB50007-2002);3.2 设计参数 地面附加荷载按20KNm2考虑。 土层参数取值按照岩土工程勘察报告提供的典型剖面分层,考虑到各土层的物理力学性质,最后归纳如下几个大层,其参数如下表:编号土层厚度(m)重度(KN/m3)内摩擦角()凝聚力(KPa)1人工填土2.01910102粘质
5、粉土、砂质粉土层2.02030263粘质粉土、砂质粉土1层1.52030104粉、细砂层1.5203505粉质粘土、粘质粉土层3.02020256粉质粘土、粘质粉土层8.02016277粉、细砂层6.0204008卵石层5.020400 基坑开挖深度根据甲方提供的资料,0.00051.06m,场地自然标高为50.2351.49m,场地周边自然标高一般为51.0m左右,采用筏板基础,基础埋深为14.50+0.10+0.05=-14.65m。本设计计算按基坑开挖深度为14.60m考虑。 计算方法根据场地周围环境,采用土钉墙和桩锚支护体系。土压力采用朗肯土压力理论。土钉墙支护体系采用BISHOP条分
6、法,桩锚体系采用分段等值梁法结合杆系有限元法。在计算中,主动侧压力不考虑水压力,只考虑基底以下的水压力。设计计算详见设计计算书。3.4 基坑边坡支护方案基坑边坡支护:以土钉墙支护体系为主,局部地段采用桩锚支护体系;全部采用桩锚支护体系。根据场地周围环境条件以及地层条件,结合我们的施工经验,经过详细、认真的计算,我们认为采用第一种方案较好,其施工方便、安全可靠、造价低、工期短;但边坡位移变形相对第二方案要大,预计位移变形约5cm,因此,不会造成边坡安全和对周边地下、地上建筑等产生危害。因北侧距已有商会馆太近(两建筑物间距为812m,距基坑开挖距离只有510m),为确保其安全,该部位采用桩锚支护体
7、系;其余部位全部采用土钉墙支护体系。3.5 基坑北侧已有商会馆部位边坡支护设计 基坑北侧已有商会馆部位采用桩锚支护体系,护坡边长约70m。支护结构设计为:从地表至地面下3.00m采用土钉墙,3.00m以下采用桩锚支护。3.5.1 护坡桩采用钢筋混凝土桩,桩径800,桩距1.60m;桩顶位于地面下3.0m,桩长为16.5m,嵌固深度为5.0m;主筋异形配置:护坡桩(1)区为825722,护坡桩(2)区为725622,通长配筋;箍筋为200,加劲筋为162000;桩身混凝土标号为25,采用现场搅拌砼;主筋保护层厚度为50mm;桩身主筋锚入桩顶连梁400mm。桩顶连梁为500800mm,配筋:主筋为
8、820;箍筋200;混凝土标号为20。3.5.2 桩顶土钉墙和桩间土护坡桩顶以上3.0m采用土钉墙,坡度为80;护坡桩(1)区于地面下1.3、2.6m设置2排土钉锚杆,锚杆长度为2.0、5.0m;护坡桩(2)区于地面下1.5m设置1排土钉锚杆,锚杆长度为5.0m;面板为现场喷射砼而成,砼强度为C20,厚度8cm,面板中间挂6.5200200的钢筋网,外配116横向加强筋并和所有土钉头用L形钢筋焊接牢固。桩间土处理采用挂钢板(丝)网后喷射砼。3.5.3 锚 杆设置两道锚杆,第一道锚杆设置在连梁之下3.0m(地面下6.0m)位置,两桩一锚,锚杆长度为25.0m(其中非锚固段长度为5.5m),锚杆直
9、径150mm,锚杆倾角为20;锚索选用3束75预应力钢绞线,锚杆锁定在28#B工字钢梁上。第二道锚杆设置在连梁之下7.5m(地面下10.5m)位置,一桩一锚,锚杆长度为25.0m(其中非锚固段长度为5.0m),锚杆直径150mm,锚杆倾角为20;锚索选用3束75预应力钢绞线,锚杆锁定在28#B工字钢上。3.6 土钉墙方案设计3.6.1 一般部位土钉墙设计边坡坡度按1:0.1设计。土钉间距:横方向为1.5m,纵方向为1.4m,一般孔径130mm,倾角1015;共10排,长度分别为12m、12m、15m、12 m、10m、13m、11m、10m、9m、8m;详见剖面示意图。孔中插入钢筋为:第一、二
10、、四、五排120,第三、六排为预应力锚杆,孔中插入218钢筋,第七、八、九、十排为122;低压灌注水泥浆,浆体强度不低于20MPa。施工第一排土钉时,如遇地下管线,应调整倾斜角度或深度位置。面板为现场喷射砼而成,砼强度为C20,厚度10cm,在预应力土钉锚杆部位加厚为12cm;面板中间挂6.5200200的钢筋网,外配118横向加强筋并和所有土钉头用双L形钢筋焊接牢固。3.6.2 东北角配电室部位土钉墙设计边坡坡度按1:0.1设计。土钉间距:横方向为1.5m,纵方向为1.4m,一般孔径130mm,倾角1015;共10排,长度分别为3m、3m、16m、13 m、12m、13m、11m、10m、9
11、m、8m;详见剖面示意图。孔中插入钢筋为:第一、二排120,第三、六排为预应力锚杆,孔中插入218钢筋,第四、五、七、八、九、十排为122;低压灌注水泥浆,浆体强度不低于20MPa。由于该部位放坡坡度达不到1:0.3,需在该部位增加钢管桩,钢管桩孔径为200mm,孔内下入1根80钢管后灌注混凝土,桩长为6.5m,钢管位于地面下0.5m。3.6.3 西北角高压线塔部位土钉墙设计由于高压线塔距基坑开挖线较近,为保证该塔的安全,将该部位的边坡坡度变为1:0.2。土钉设计同其余部位。3.6.4 加固措施由于该场地下部地层为湖沼相沉积的粉质粘土、粘质粉土层,其土质较软,变形大,加之位于上层滞水含水层底板
12、以下,降水后仍有残留滞水,将加大其变形。因此,应采取以下处理措施: 加大降水力度,保证降水质量。降水质量的好坏直接影响护坡施工的进行,必须加强降水和残留滞水处理工作(见降水部分)。 在危险部位的地面设置锚拉桩,控制地面位移变形。锚拉桩位于基坑外810m,桩径200mm,桩长12m,用人工打孔后,放入220钢筋,孔内灌注C20砼,用118钢筋与土钉锚杆焊接为一体,锚拉桩间距为3.04.5m。 设置预应力锚杆,控制边坡位移变形。在地面下4.2m和8.4m位置设置二排预应力锚杆,锚杆间距为1.5m。第一排预应力锚杆长度为15m,孔径150mm,孔内置入2根18钢筋;第二排预应力锚杆长度为1314m,
13、孔径150mm,孔内置入2根18钢筋。孔内灌注水泥浆,水泥浆内可加入早强剂或膨胀剂,每排预应力锚杆横向用1216#槽钢连接在一体,待灌注水泥浆4872小时后进行张拉锁定(张拉前先戴上螺母)。 采取措施,保证土钉成孔质量。由于残留滞水和软弱地层影响,该场地在深度7m左右位置的土钉可能成孔困难,如无法进行人工成孔时,可采用以下措施:a. 顶入钢管法,先用人工打孔到67m后,放入50钢管,用挖土机顶入;钢管长度为9m,钢管连接处用三根16钢筋邦焊,邦筋长度为56m,钢管内外灌注水泥浆;将钢管外端与上下两排锚杆的外端用18钢筋焊接为一体。b. 机械成孔法,用锚杆钻机成孔。4. 基坑降水方案设计4.1
14、设计依据 甲方提供的岩土工程勘察报告;建筑与市政降水工程技术规范JGJ/T111-98;4.2 降水设计计算4.2.1 基坑涌水量 计算基坑引用半径(r0): 0=76.7m式中:r0基坑引用半径(m),L基坑长度(m),B基坑宽度(m), 修正系数。 确定引用影响半径(R):R3=2S3 = 2531.6(m)R2=20.0m式中:R1 、R2上层滞水、潜水含水层引用影响半径(m),S1、 S2上层滞水、潜水降水深度(m),H1 、H2上层滞水、潜水含水层厚度(m),K1 、k2上层滞水、潜水含水层渗透系数(md)。 基坑涌水量(Q)上层滞水层涌水量(Q2)Q1 =455.8(m3/d)潜水
15、层涌水量(Q3) Q2 =373.3(m3/d)基坑总涌水量(Q总) :Q总=Q2+Q3 = 829.1 (m3d) 4.2.2 井出水能力上层滞水部分:q1=8.3(m3d)潜水部分: q2=14.4(m3d)式中:q1潜水单井出水量,q2承压水单井出水量,进水管高度, 进水管直径。4.2.3 确定井数量(n)上层滞水部分:n=55(个);潜水部分:n=26(个)4.2.4 确定井间距(a)上层滞水部分:a1=9.5(m); 潜水部分:a2=22(m)式中:基坑降水井轴线周长,降水井数量由以上计算结果,a. 将上层滞水水位降低至含水层底板时,所需降水井数为55个,降水井间距约为9.5m;将潜
16、水水位降低3.0m时,所需降水井数为26个,降水井间距为22m。为了减小上层滞水含水层的残留水量,保证降水效果,将基坑周边降水井间距缩小为67m,降水井数增加到7585个。4.2.5 计算自渗降水能否满足降水要求 基坑的总入渗水量Q入: Q1 =829.1 (m3/d)Q入 829.1 各引渗井的单井入渗量Qi: Qi = = 11.8 (m3/d) n 70 引渗井的水位抬升值h: 0.366Q 2l 0.36611.8 21 h=lg =lg = 0.2 (m) kl rw 15 2 0.15 考虑成井泥浆等的影响,取安全系数为5,即:h=5h=50.2 = 1.0 (m) 引渗井的混合水
17、位埋深 S井:S井=S2-h= 22.0 1.0 =21.0 (m) 以上计算结果,引渗井的混合水位埋深远低于基坑降水深度,可以满足自渗要求。 4.2.6 计算北侧已有商会馆楼处的地下水位下降值(S近,S远) 上层滞水层a. 最近点(距基坑3m)的地下水位下降值(S近)S近1=4.7(m)b、中间点(距基坑10m)的地下水位下降值(S中)S中1=4.0(m)c、最远点(距基坑25m)的地下水位下降值(S远)S远1=2.1(m) 潜水层a.最近点(距基坑3m)的地下水位下降值(S近)S= -h2 = -34.4(m)b.中间点(距基坑10m)的地下水位下降值(S中)S= -h2 = -32.9(
18、m)c、最远点(25m)的地下水位下降值(S远)因降水影响半径为20m ,所以,在最远点(25m)处的地下水水位下降值为0.0m。4.2.7 因地下水位降低所引起的已有建筑沉降计算 上层滞水层a、最近点(距基坑3m)S近S近=15.8(mm)b、中间点(距基坑10m)S中S近=11.4(mm)c、最远点(距基坑25m)S远S远=3.1(mm) 潜水层a、最近点(距基坑3m)S近S近=10.8(mm)b、中间点(距基坑10m)S中S近=4.8(mm)c、最远点(距基坑25m)S远S远=0.0(mm) 总计沉降量S近=15.8+10.8=25.6(mm);S中=11.4+4.8=16.2(mm);
19、S远=3.1+0.0=3.1(mm) 差异沉降值为S: S= S近- S远=25.6-3.1=22.5(mm) 已有建筑物的基础倾斜值为:I=安全以上计算表明,采用基坑降水时,因地下水位降低所引起北侧已建楼的基础沉降量约18.5MM,倾斜值约1,小于规范要求值13,对其不会产生较大影响。但不知已建楼的建筑结构和施工质量,为了加大安全度,避免不必要的麻烦,建议北侧已建商会馆楼部位采用在护坡桩间加隔水帷幕,保证该部位的地下水位不被降低,以确保已建商会馆楼的安全。4.3 降水方法的选择4.3.1 工程特点该降水工程的主要难点在于:a. 基坑深度超过了上层滞水、层间潜水层底板,且基础位于层间潜水层之内
20、,其粉、细砂层和砂质粉土之中的地下水很不好降,因降水井的影响范围小,可是残留水量较大,基坑开挖后容易产生流砂,造成边坡支护困难。b. 由于基坑面积大,周边降水井难以保证中部降水要求,而采用常规抽水方法将给基坑和建筑施工带来许多不便。c. 基坑北侧已建商会馆相距太近,降水将对其产生影响。4.3.2 方法选择根据以上计算和分析,结合场地的环境条件和水文地质条件,拟采用管井自渗的降水方案。由于基坑深度约14.6m,降水深度达15.0m以下,且涌水量较大,宜采用管井降水;为了尽量减少抽排水量和降低基坑残留水及残留水层厚度,保证地下水位达到设计要求及基坑边坡安全,拟在基坑周边和中部设置自渗降水井。因降水
21、目的层为上层滞水和潜水,含水层岩性为细颗粒砂质粉土和粉细砂,渗透性弱,水量相对较小;而其下伏的卵石层含水层,水位埋深约22m,低于基坑底部,且渗透性能良好,可以消纳大量水量,将上部地下水引渗至该层含水层之中,可以满足降水要求;如果降水井中的地下水位抬高, 难以完全达到降水要求时,选择部分降水井进行抽水,将大大提高地下水的引渗能力,增强上部含水层的降水条件, 以加大降水深度,达到基坑降水的要求。为了避免降水对北侧已有建筑物造成危害,应采用设置隔水帷幕方案,使帷幕以外的地下水水位不被降低,以保证已有建筑物的绝对安全。4.3.3 自渗降水原理及优点自渗降水,即在场地内设置引渗井点,用人工沟通上下含水
22、层,靠其自身水位差的作用, 将上部含水层中的地下水引渗到下部含水层之中,达到不用抽排地下水而降低地下水位的目的。自渗降水是目前最先进的降水方法之一:可在基坑内部设置引渗降水井,有效地解决大面积降水工程中的技术难题;无须设置抽排水管线,不占用场地;不进行排水,避免缴纳排污费和冬施排水的不便;降水期间不用电,既节约抽水的大量电费,又可避免停电所带来的影响;自渗降水井的长时间降水效用对地下室的防水较为有利;采用自渗降水,不需或减少抽排地下水,可以减小降水对周边已有建筑物的影响;特别是该工程要求降水时间长,既可避免长时间抽水所带来的各项费用,又可为建筑施工提供更多便利条件。4.3.4 已有工程经验 自
23、渗降水:我公司具有自渗降水的许多成功经验,如“京宝花园深基坑”工程,其基坑深度19.5m,全部采用自渗降水,效果非常好,荣获全国优秀质量管理奖和部级一等奖;“三元大厦深基坑”工程,基坑深度17.523.5m,浅基坑部分采用全部自渗降水,深基坑部分采用渗、抽结合降水,降水效果非常好;“住邦2000A座”工程,基坑深度14.5m,采用渗、抽结合降水,降水效果非常好。这些降水工程的水文地质条件都与该工程相似,因此,完全可以采用自渗降水。 隔水帷幕:“北大校史馆”工程,基坑西侧紧邻荷塘,相距12m,采用隔水帷幕止水和护坡桩护坡,效果非常好。“北京电影频道楼”工程,基坑南侧距已建7层楼仅2m,采用隔水帷
24、幕止水和护坡桩护坡,已建楼未发生任何影响。4.4 降水方案设计4.4.1 降水井布置在基坑周边(除北侧已有商会馆楼部分地段外)布置降水井,降水井距基坑边沿23m,井间距67m,计降水井约7080个;在北侧已有楼部分的隔水帷幕地段,于基坑护坡桩内侧或隔水帷幕内侧布置自渗降水井,井间距为1015m,计降水井约56个;在基坑内按20m30m方格网布置自渗降水井,预计降水井约20个。如自渗降水不能完全满足降水要求时,可根据实际情况间隔选用部分降水井进行抽水。4.4.2 降水井结构降水井孔深分为两种:浅层自渗降水井,入渗目的层为细砂4层,井深为1820m,以揭穿细砂4层底板为准;深层自渗降水井,入渗目的
25、层为粉、细砂层和卵石层,井深为2832m,以进入卵石层23m为准;两种降水井间隔布置,如该部位无细砂4层时,前期可对浅层自渗降水井进行抽水。降水孔径600mm,井管为直径400mm的水泥砾石滤水管,井管外填入直径为24mm的砾石或石硝滤料。4.4.3 残留滞水的处理基坑侧壁在上层滞水层和各潜水层的底板位置会出现残留滞水,特别是潜水层的底部,其渗水量较大,必须采取有效的处理措施。在基坑四周边坡的含水层底部插入引流管或设置排水管道,将隔水层所托的残留滞水引入集水井之中抽走。在砂土潜水含水层底部残留滞水层范围内可采用超前注桨止水或插入引水管后再进行桩间土处理。采用土钉墙支护的边坡,在出水大的砂层容易
26、发生流砂,同时土钉难以成孔,造成边坡坍塌。遇到这种情况,应在砂层底板位置设置水平引水管道,即在砂层底板位置的边坡上留一0.10.3m台阶,于台阶之上挖0.10.1m小沟,沟底铺塑料布,沟内埋设直径38mm的塑料滤水管,然后填满砾石滤料,最后喷射土钉墙面板,使之成为暗引水管,相距810m留一个出水口,降水引入集水井。为了保证下部边坡的稳定和便于在边坡之上设置排水管道,尽量减小上部边坡的放坡坡度,将放坡量用于下部。采用护坡桩支护的边坡,在出水大的砂层底板位置,常常发生流砂将桩间土掏走,形成很大的空洞,造成边坡危害。遇到该情况,应在砂层底板位置砌砖墙,砖墙两端与护坡桩靠紧,在砖墙后将流砂掏出,换入砾
27、石滤料,将引水管置于滤料中,从砖墙中引出。设置水平引水管道,即在砂层底板位置的边坡上留一0.10.3m台阶,于台阶之上挖0.10.1m小沟,沟底铺塑料布,沟内埋设直径38mm的塑料滤水管,然后填满砾石滤料,最后喷射土钉墙面板,使之成为暗引水管,相距810m留一个出水口,降水引入集水井。为了保证下部边坡的稳定和便于在边坡之上设置排水管道,尽量减小上部边坡的放坡坡度,将放坡量用于下部4.4.4 预防措施在基坑四周距坑边沿5m内不得设置用水点;在场地内的所有用水点,均应设置排水沟,将水引人下水管道。在基坑四周边沿设置排水沟(或排水管道、集水坑),沟内及以外3m范围的地面用水泥抹面,防止降雨和人工用水
28、的入渗。在边坡之上,每隔35m设置一根引水管,深l2m,以防降雨入渗补给而引起边坡坍塌。检查、并堵塞基坑周边附近的人防信道、上下水管道和暖气沟等,防止渗水和雨季大量积水引起边坡坍塌。护坡桩和土钉锚杆必须避开降水井。在基坑周边底部设置排水沟和集水井,将周边残留水抽出基坑。4.5 北侧已建商会馆部位隔水帷幕方案设计基坑北侧已建商会馆部位拟采用深层水泥搅拌桩隔水帷幕。即在护坡桩外侧0.20.3m布置1排深层水泥搅拌桩隔水帷幕,隔水帷幕设置长度约70m;由于基坑边上有高压线,钻机无法施工,采用先下挖3m后进行施工。帷幕桩(1)区的桩间距300mm,桩直径600mm,相邻桩搭接300mm;帷幕桩(2)区
29、的桩间距300mm,桩直径500mm,相邻桩搭接200mm。搅拌桩长度为12.5m,进入隔水层约1.0m;桩体强度为1.5MPa。5. 地基处理方案设计5.1 地基处理概况根据岩土工程勘察报告提供的方案资料,拟建建筑物包括办公A翼(地上23层)、办公B翼(地上19层)、公寓(地上1418层)、商场(地上3层)、俱乐部及纯地下室组成。拟建楼座均设3层地下室,于主楼周边均为纯地下建筑,并与主楼地下室底板连成一整体(设置后浇带);拟建建筑物采用筏板基础,基础埋深-14.65m。根据勘察报告估计的主要建筑物基底平均荷载为:办公A翼为464Kpa(原估计地上24层),办公B翼为400Kpa(原估计地上2
30、0层),公寓310370Kpa。而地基持力层的承载力标准值为180Kpa,不能满足设计要求,我公司拟采用复合地基进行加固处理。5.2 地基处理方案选择根据场地地质条件以及对建筑物设计要求,可供选择的地基处理施工工艺方法很多,如钢筋混凝土灌注桩、中心压灌CFG桩等,合理的选择地基处理工艺方案对提高地基承载力有较大的影响,同时还应考虑施工工期、经济造价、环境保护等综合因素。钢筋混凝土灌注桩的单桩承载力高,沉降变形小(约20mm),但该施工工艺较复杂,造价高。中心压灌CFG桩施工工艺方法是采用长螺旋机械钻进成孔,然后利用高压混凝土输送泵将CFG桩混合料、经过钻具中心通道通过钻头、泵送至孔底,边提钻边
31、泵送混合料,这样就在孔内就形成了CFG桩;采用该工艺方法,一方面可以充分利用和发挥地层中的粉细砂层的良好持力层作用;该施工工艺桩身质量易于控制、施工速度快、无噪音、造价低等优点;但单桩承载力低,沉降变形相对较大(可50mm。采用CFG桩复合地基,完全可以满足地基沉降和建筑物倾斜值的要求。因设计要求的地基沉降量40mm,对CFG桩复合地基来说有一定难度,为了减少沉降量,建议桩端持力层选择卵石层。5.3 CFG桩复合地基设计依据岩土工程勘察报告; 建勘察报告提供的地基基础平面示意图; 地基所的水泥粉煤灰碎石桩(CFG桩)复合地基设计规程;建筑地基基础设计规范(GBJ7-2002);北京地区建筑地基
32、基础勘察设计规范(DBJ01-501-92);建筑地基基础处理规范(JGJ79-2002)。5.4 CFG桩设计原则 满足设计要求的复合地基承载力标准值。目前无设计提供的复合地基承载力标准值,根据一般经验估计各处理部位的复合地基承载力标准值为:办公A翼为460Kpa,办公B翼为400Kpa,公寓310370Kpa。 满足规范及设计单位对建筑物地基沉降及倾斜的要求。处理后的复合地基沉降值40mm,与周边建筑物的差异沉降量应满足规范要求。 满足桩土变形和主楼与裙楼协调一致的原则。 具体处理范围待协同分析后确定,本设计暂按设置的后浇带所包含的主楼范围进行。5.5 CFG桩复合地基设计5.5.1 设计
33、计算5.5.1.1 单桩承载力标准值的确定选用桩径400,桩长为13.0m,有效桩长为12.5m。则单桩承载力为:=(2.560+3.065+6.570)3.140.40+(3.14/40.421800)/1.75 = 703 kN其中:Rk -单桩承载力标准值,kN;Up-桩的截面周长,m;qsik-第i层桩周土的极限侧阻力,kPa; hi-第i层土的厚度,m; qpk-桩的极限端阻力标准值,kPa; Ap-桩的截面面积,m2 ;K-桩的安全系数;一般取k=1.501.75,取1.70。5.1.1.2 身强度的确定桩体强度应由桩顶应力确定,桩体强R28不应小于2.53.0倍的桩顶应力;即;
34、R28其中:-桩顶应力,kPa;R28-桩体设计强度,C20。5.1.1.3 办公A翼CFG桩设计计算 置换率的确定由公式:;可得: fsp-复合地基承载力标准值,460kPa; m-桩的置换率;0.0548; -桩间土发挥系数,一般为=0.751.0,取0.90 桩位布置正方形布置: S=0.886d/=1.51m;其中:S-桩间距,1.50m1.50m。5.1.1.4 办公B翼CFG桩设计计算 置换率的确定由公式:;可得: fsp-复合地基承载力标准值,400kPa; m-桩的置换率;0.0438; -桩间土发挥系数,一般为=0.751.0,取0.90 桩位布置正方形布置: S=0.886
35、d/=1.69m;其中:S-桩间距,1.70m1.70m。5.1.1.5 公寓(14层部位)CFG桩设计计算 置换率的确定由公式:;可得: fsp-复合地基承载力标准值,310kPa; m-桩的置换率;0.0272; -桩间土发挥系数,一般为=0.751.0,取0.90 桩位布置正方形布置: S=0.886d/=2.15m;其中:S-桩间距,2.10m2.10m。5.1.1.6 公寓(16层部位)CFG桩设计计算 置换率的确定由公式:;可得: fsp-复合地基承载力标准值,340kPa; m-桩的置换率;0.0337; -桩间土发挥系数,一般为=0.751.0,取0.90 桩位布置正方形布置:
36、 S=0.886d/=1.93m;其中:S-桩间距,1.90m1.90m。5.1.1.7 公寓(18层部位)CFG桩设计计算 置换率的确定由公式:;可得: fsp-复合地基承载力标准值,370kPa; m-桩的置换率;0.0383; -桩间土发挥系数,一般为=0.751.0,取0.90 桩位布置正方形布置: S=0.886d/=1.81m;其中:S-桩间距,1.80m1.80m。5.5.2 CFG桩复合地基设计根据CFG桩的设计原则和设计单位的要求, 拟在基础处理范围内布置桩径400的CFG桩。基槽开挖至标高-14.15m开始进行CFG桩施工。由于场地分布范围太大,各基础部位的实际地层分布不一
37、样,桩长可能有变化,应根据场地实际情况进行调整,以进入卵石层0.3m和桩长不小于12.5m为准。具体设计如下:办公A翼的桩间距为1.50m1.50m,共布桩约520根;办公B翼的桩间距为1.70m1.70m,共布桩约329根;公寓(14层部位)的桩间距为2.10m2.10m,共布桩约204根;公寓(16层部位)的桩间距为1.90m1.90m,共布桩约183根;公寓(18层部位)的桩间距为1.80m1.80m,共布桩约474根。总计CFG桩数约1710根。各主楼基础处理范围、桩数、桩长度等应经过与建筑设计人员协商后确定。5.5.3 碎石垫层设计CFG桩施工完毕后,各区截桩清至桩顶标高-14.80
38、m,然后虚铺17cm厚的碎石垫层,粒径不大于3.0cm,压实至15cm即至槽底标高14.65m。5.6 沉降计算根据我公司已有资料及勘察报告中的地质资料,当采用我公司提出的CFG桩复合地基方案时,地基沉降按下式计算: n1 P0ih i n2 P0i h i S=( + ) i=1 Esi i=1+n1 Esi 式中: n1 加固区的分层数; n2 总的分层数; P0i 荷载P0在第i层产生的平均附加应力; Esi 第i层土的压缩模量; hi 第i层土的分层厚度; 模量提高系数,=1m(n-1),其中m为面积置换率,n为桩土应力比,为桩间土提高系数; 沉降经验系数,按GBJ7-89规范表5.2
39、.5取值。根据公式计算:经CFG桩处理后的地基沉降量40mm;地基沉降和建筑物倾斜值均满足规范的要求。5.7 加固效果检测采用静载试验和动测桩进行加固效果的检测。此外还进行试块强度试验。5.7.1 载荷试验拟在各楼座的地基处理范围内任选CFG桩23根进行单桩静载试验。共计约1015根,各楼座如试验前两根的结果均满足设计要求,且较均匀时,可不进行第三根的试验。以确定复合地基的承载力及变形模量值。检验复合地基的承载力能否满足设计要求。5.7.2 动测桩测试拟在基槽内各段任选1020%的桩做动测,以检测桩身质量。5.7.3 试块强度试验每天制作1组试块,测定其28天抗压强度能否满足设计要求。5.8
40、其它说明 当周围环境、地层发生变化时或本设计方案与实际情况有出入时,该方案应做进一步的调整;调整方案可根据实际地层分布与建筑设计人员共同协商。 因底板存在有后浇带,应在主体工程完工后(此时主体已完成最终沉降的5060%),根据建筑物的沉降观测结果,由甲方、设计单位、施工单位共同协商确定后浇带浇注时间,避免因差异沉降导致后浇带连接部位开裂。 施工前,测放楼座基础轴线和外轮廓线,并经各方(设计、施工单位、甲方)共同验收后方可进行桩的定点和施工。6. 基坑土方挖运6.1土方开挖计划该工程挖运土石方约23万方。拟投入4台挖掘机,每天可挖装土石方4500方,加上收坡,并考虑不利天气影响,本工程土石方可在
41、50天内完成;每台挖掘机配备自卸汽车数量为10台,4台挖掘机投入40台自卸汽车。依工程进度可适当增加或减少车辆。6.2 土方分区与开挖分步基坑土方挖运分为四个区(详细分区见“平面布置图”),各区挖至槽底的先后顺序为区区区区。边坡土方分区、分段、分步开挖,开挖长度和范围根据边坡支护的方式和实际地层条件确定,开挖深度除第一步为2.0m外,其余每步下挖1.4m,共分10步开挖。核心区土方分步开挖,共分3步,每步下挖约5.0m。6.3出土口和马道设置由于受现场周围的道路的影响,外运土方的进车口及出车口均设在基坑西侧,在1区和4区西侧分别设置各自独立的马道口,马道宽度不小于10米,保证两辆太脱拉运土车能
42、并列行驶。为不影响CFG桩的施工,土方施工收口坡道具体留置位置详见附图。将出土口处的降水井下卧至地面下12m,以保证基坑降水的顺利进行。挖至坡底时,最短坡道长度不小于38米,最大放坡角度为20度。6.4 土方开挖与其它工序的配合6.4.1 土方开挖与总包方的配合护坡施工必须服从总包方的统一协调指挥,严格按合同要求和设计方案进行施工;施工前先放出基槽开挖线,根据设计方案进行边坡坡度控制;控制好槽底尺寸和标高。6.4.2 土方开挖与降水的配合为了合理安排工期,降水井施工与北侧隔水帷幕施工同时进行,当北侧隔水帷幕和降水井分段施工完成后,可以马上进行第一步土方开挖。因开挖第一步土方和护坡施工的时间较长
43、;到挖第二步土时,地下水位已可降到开挖深度以下。6.4.3 土方开挖与护坡施工的配合在土方开挖前,必须查明场地地下管线的埋藏位置和深度,由甲方提供书面材料和进行现场移交,共同协商移位和保护方案;对不明地下障碍物,采用探管仪或挖沟探查清楚后协商处理方案;在土方开挖时,派专人现场指挥,发现异常情况立即停止挖土,并马上组织人员抢修,使损失降到最低。土方开挖需与护坡施工密切配合,为本工程施工的重要环节,直接制约着施工质量和工期。基坑一般部位挖土自上而下分10步开挖,每步挖至设计土钉或锚杆施工位置下0.5m。对北侧护坡桩部位,基坑土方分4步开挖,第一步挖至地面下3.0m,进行护坡桩、连梁和搅拌桩帷幕及桩顶土钉墙施工;第二步挖至地面下6.5m,进行第一道锚杆施工;第三步挖至地面下11.0m,进行第二道锚杆施工;第四步挖至设计槽底标高。每步挖土均应从基坑周边开始,在保证有足够的护坡施工工作面后,再进行中部土方开挖。6.4.4 土方开挖与地基处理施工的配合土方开挖应以地基处理进程为主,先集中力量将需要进行地基处理的1区和2区部位挖至设计CFG桩施工标高,以便进行CFG桩施工。在CFG桩施工期间进行其它部位的开挖和清底工作。待CFG桩施工完成后,立即进行桩土和预留土挖运及清底工作。6.5开挖注意事项:6.5.1反铲挖土,充分利用挖土半径,提高效率,尽量抓紧时间,赶前不赶后