状态空间表达式解ppt课件.ppt

上传人:牧羊曲112 文档编号:2127265 上传时间:2023-01-15 格式:PPT 页数:51 大小:502.62KB
返回 下载 相关 举报
状态空间表达式解ppt课件.ppt_第1页
第1页 / 共51页
状态空间表达式解ppt课件.ppt_第2页
第2页 / 共51页
状态空间表达式解ppt课件.ppt_第3页
第3页 / 共51页
状态空间表达式解ppt课件.ppt_第4页
第4页 / 共51页
状态空间表达式解ppt课件.ppt_第5页
第5页 / 共51页
点击查看更多>>
资源描述

《状态空间表达式解ppt课件.ppt》由会员分享,可在线阅读,更多相关《状态空间表达式解ppt课件.ppt(51页珍藏版)》请在三一办公上搜索。

1、第2章 控制系统状态空间表达式的解,2.1 线性定常连续系统齐次状态方程的解,2.6 线性离散系统状态方程的解,2.2 线性定常连续系统状态转移矩阵的几种算法,2.3 线性定常连续系统非齐次状态方程的解,2.4 线性时变连续系统状态方程的解,2.5 线性连续系统状态方程的离散化,2.1 线性定常连续系统齐次状态方程的解,2.1.1 齐次状态方程的解,u=0,1、直接求解,设 n=1,解为x(t)=eatx0,且eat=1+at+a2t2/2!+,对于 n阶,,解为X(t)=eAtX0,eAt=I+At+A2t2/2!+,矩阵指数函数,证明:,设X(t)解的形式为,X(t)=b0+b1t+b2t

2、2+bktk+,代入状态方程,b1+2b2t+3b3t2+kbktk1+=A(b0+b1t+b2t2+bktk+),b1=A b0,2.1.1 齐次状态方程的解,b1=A b0,令t=0,X(t)=b0+b1t+b2t2+bktk+,X(0)=b0=X0,将上述结果代入X(t),X(t)=(I+At+A2t2/2!+)X0=eAtX0,若t00,则 X(t)=eA(tt0)X(t0),2、拉氏变换法求解,SX(S)X(0)=AX(S),(SIA)X(S)=X0,X(S)=(SIA)1X0,对上式取拉氏反变换,X(t)=L1(SIA)1X0=eAtX0,X(t)=eAtX0,2.1.1 齐次状态

3、方程的解,记为:(t)=eAt(tt0)=eA(tt0),状态方程解:X(t)=(t)X0 X(t)=(tt0)X(t0),状态转移曲线,2.1.2 状态转移矩阵,状态转移矩阵满足的条件:,(0)=I,eAt=L1(SIA)1,X(t)=eA(tt0)X(t0),状态转移矩阵:eA(tt0)或eAt,2.1.2 状态转移矩阵,1、状态转移矩阵的性质:设t0=0,(1)(0)=I,根据定义得证,eAt=I+At+A2t2/2!+,证明:根据定义,(t)=eAt=I+At+A2t2/2!+,=A(I+At+Ak1tk1/(k1)!+),=A(t)=(t)A,(3)(t1+t2)=(t1)(t2),

4、证明:,(t1+t2)=eA(t1+t2)=I+A(t1+t2)+A2(t1+t2)2/2!+,=(I+At1+A2t12/2!+)(I+At2+A2t22/2!+),=(t1)(t2),(4)(t)1=(t),证明:由,(3)(t1+t2)=(t1)(t2),证明:,得(tt)=(t)(t)=I,(1)(0)=I,(t+t)=(t)(t)=I,所以(t)1=(t),(5)(t2 t1)(t1 t0)=(t2 t0),右式=(t2 t1+t1 t0),由(3)得=(t2 t1)(t1 t0),(t)k=(t)(t)(t)=eAt eAt eAt,=e(A+A+AA)t=ekAt=(kt),(6

5、)(t)k=(kt),1、状态转移矩阵的性质:设t0=0,(7)对于nn阶A和B阵,如果满足AB=BA,则,e(A+B)t=eAteBt,2、几个特殊 状态转移矩阵的性质,(1)若A为对角线矩阵,1、状态转移矩阵的性质:设t0=0,证明:,将对角线矩阵A代入,eAt=I+At+A2t2/2!+中,eAt=,+,+1/2!,+,证明:,(2)若A为mm约当块,(t)=,求(t)1,解:根据,(4)(t)1=(t),作业2-1:已知系统的状态转移矩阵为,(t)=,求系统矩阵A,2.2 线性定常连续系统状态转移矩阵的几种算法,2.2.1 直接计算法,(t)=eAt=I+At+A2t2/2!+,2.2

6、.2 拉氏变换法,(t)=eAt=L1(SIA)1,2.2.3 标准形法,1、矩阵A的特征值互异,P1,eAt=P,P:化A为对角线标准形的线性变换阵,状态转移矩阵为,1、矩阵A的特征值互异,证明:,当A的特征值互异时,必存在一个变换阵P,使,又 eAt=I+At+A2t2/2!+,则 P1eAtP=P1IP+P1 AtP+P1 A2t2/2!P+,由于 P1 A2P=P1 APP 1AP,1、矩阵A的特征值互异,同理:,=,所以 P1eAtP=P1IP+P1 AtP+P1 A2t2/2!P+,P1 AkP=(P1 AP)(P 1AP),1、矩阵A的特征值互异,=,+,+1/2!,+,所以 P

7、1eAtP=P1IP+P1 AtP+P1 A2t2/2!P+,1、矩阵A的特征值互异,P1eAtP=P1IP+P1 AtP+P1 A2t2/2!P+,1、矩阵A的特征值互异,例:已知系数矩阵,试求其状态转移矩阵。,解:1=1、2=2、3=3,2、矩阵A有重特征值,A具有m重特征值,则状态转移矩阵为,以A有三重特征值为例进行证明,证明 eAt=I+At+A2t2/2!+,则 Q1eAtQ=Q1IQ+Q1 AtQ+Q1 A2t2/2!Q+,=I+Jt+J2t2/2!+,eAt=Q(I+Jt+J2t2/2!+)Q1,若A具有三重特征值1,二重特征值2,单特征值3,,状态转移矩阵,2.2.4 化eAt

8、为A的有限项法,已知 eAt=I+At+A2t2/2!+,则有eAt=a0(t)I+a1(t)A+a2(t)A2+an1(t)An1,a0(t)、a1(t)、,an1(t)为待定系数是t的标量函数,若A的特征值互异,则,2.3 线性定常连续系统非齐次状态方程的解,1、直接求解,非齐次状态方程的解,2、拉氏变换求解,SX(S)X(0)=AX(S)+BU(S)设 t0=0,X(S)=(SIA)1X0+(SIA)1 BU(S),对上式取拉氏反变换,利用卷积积分,X(t)=L1(SIA)1X0+L1(SIA)1BU(S),非齐次状态方程的解,例:已知系统状态方程,X0=0,试求在单位阶跃输入(u=1(

9、t))作用下状态方程的解。,解:,(t)=eAt=L1(SIA)1,(SIA)1,eAt=L1(SIA)1,状态方程的解,X(t)=,eAt,2.4 线性时变连续系统状态方程的解,2.4.1 线性时变连续系统齐次状态方程的解,已知X(t0),状态方程的解:,X(t)=(t,t0)X(t0),2.4.2 状态转移矩阵(t,t0)的性质,(1)(t0,t0)=I,证明:将X(t)=(t,t0)X(t0)代入,上式成立的充要条件,即,又,X(t)=(t,t0)X(t0),当t=t0时,,X(t0)=(t0,t0)X(t0),,所以(t0,t0)=I,(2)(t2,t1)(t1,t0)=(t2,t0)

10、,证明:X(t)=(t,t0)X(t0),X(t1)=(t1,t0)X(t0)(1),X(t2)=(t2,t0)X(t0)(2),X(t2)=(t2,t1)X(t1)(3),将(1)代入(3)中,X(t2)=(t2,t1)(t1,t0)X(t0)与(2)式比较,则,(t2,t1)(t1,t0)=(t2,t0),(3)1(t,t0)=(t0,t),证明:由性质(1)(2)知,(t,t0)(t0,t)=(t,t)=I,(t0,t)(t,t0)=(t0,t0)=I,故(t,t0)与(t0,t)互为逆矩阵。,2.4.3 状态转移矩阵(t,t0)的计算,2.4.3 状态转移矩阵(t,t0)的计算,证明1

11、:,则满足,对上式求导,满足(t0,t0)=I,2.4.3 状态转移矩阵(t,t0)的计算,证明1:(1)式两边左乘A(t),比较(2)、(3)两式,若使,必满足,又,=I,例:求时变系统的状态转移矩阵(t,0),解:证明,取前面三项近似计算,2.4.4 非齐次状态方程的解,状态方程的解,X(t)=(t,t0)X(t0)+(t,t0)(t),证明:应用叠加原理,对上式求导,与状态方程比较,得,证明:,=(t0,t)B(t)u(t),两边积分,X(t)=(t,t0)X(t0)+(t,t0)(t),又 X(t0)=(t0,t0)X(t0)+(t0,t0)(t0),X(t0)=I X(t0)+I(t

12、0),(t0)=0,得证,2.5 线性连续系统状态方程的离散化,2.5.1 线性时变连续系统状态方程的离散化,X(k+1)T=G(kT)X(kT)+H(kT)u(kT),T满足香农定理:采样脉冲宽度远小于采样周期.,系统具有零阶保持特性:在两个采样瞬时之间的采样值不变。即,u(t)=u(kT),kTt(k+1)T,推导离散化的状态方程:,已知:,将上式离散化,令t=(k+1)T,t0=hT,代入上式,(1),2.5.1 线性时变连续系统状态方程的离散化,令t=kT,t0=hT,代入(1)式,得,将上式两边乘(k+1)T,kT,(2)式减去上式,2.5.1 线性时变连续系统状态方程的离散化,令

13、G(kT)=(k+1)T,kT,u()=u(kT),kT,(k+1)T,X(k+1)T=G(kT)X(kT)+H(kT)u(kT),Y(kT)=C(kT)X(kT)+D(kT)u(kT),2.5.2 线性定常连续系统状态方程的离散化,X(k+1)T=GX(kT)+Hu(kT),G=(k+1)T kT=(T)=eAT,令t=(k+1)T,Y(kT)=CX(kT)+Du(kT),例:试将状态方程离散化。,解:,eAt=L1(SIA)1,(SIA)1=,B=,=,+,u(kT),2.5.2 线性连续系统状态方程离散化的近似方法,T较小,满足精度的条件下,用差商代替微分。,X(k+1)T=I+T A(

14、kT)X(kT)+TB(kT)u(kT),2.6 线性离散系统状态方程的解,2.6.1 线性定常离散系统状态方程的解,X(k+1)T=GX(kT)+Hu(kT),1、迭代法,X(0),u(0)X(1),u(1)X(2),u(2),设:X(0),u(0)已知,X(1)=GX(0)+Hu(0),X(2)=GX(1)+Hu(1)=G2X(0)+GHu(0)+Hu(1),2.6.1 线性定常离散系统状态方程的解,X(k+1)=GX(k)+Hu(k),2、Z变换法,对上式进行Z变换,zX(z)zX(0)=GX(z)+HU(z),(zIG)X(z)=zX(0)+HU(z),X(z)=(zIG)1z X(0

15、)+(zIG)1HU(z),=(zIG)1z X(0)+HU(z),Z反变换,X(k)=Z1(zIG)1z X(0)+(zIG)1HU(z),比较两种方法有如下关系,Gk=Z1(zIG)1z,或X(k)=Z1(zIG)1z X(0)+HU(z),例:求线性定常离散系统的解。已知u(k)=1(k=0,1,2),X(0)=,u(k),=,+,解:方法一,迭代法,方法二,Z变换法,X(k)=Z1(zIG)1z X(0)+HU(z),zX(0)+HU(z)=,u(k)=1,X(z)=(zIG)1z X(0)+HU(z),2.6.2 线性时变离散系统状态方程的解,迭代法,再见!,2-1 已知,求(t)。,22 已知,23 求状态空间表达式的解,求系统矩阵A,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号