《磁场能量与磁场力ppt课件.ppt》由会员分享,可在线阅读,更多相关《磁场能量与磁场力ppt课件.ppt(18页珍藏版)》请在三一办公上搜索。
1、4.8 磁场能量与磁场力,磁场作为一种特殊的物质,和电场一样具有能量。同时磁场对其中的载流导体或运动的电荷具有力的作用,这种力称为磁场力或电磁力。有专家预测,21世纪将是以磁力(磁能)作为能源代表的时代。,直流电动机,磁悬浮列车,高温超导体磁场特性的发现与利用,使梦想中之能源受控热聚变,磁流体发电,太阳能卫星电站,逐步成为现实,利用磁能作为驱动力的超导体磁悬浮列车和超导磁动力船己向我们驰来。,1、恒定磁场中的能量,磁场能量的推导过程,假设:载流回路是刚性的、位置固定(无机械损失),场中媒质为线 性(无磁滞损失);磁场建立无限缓慢(不考虑涡流及辐射等其他损耗);系统能量仅与系统的最终状态有关,与
2、能量的建立过程无关。,则 t 时刻,回路1、2中的感应电动势为,若要继续充电,外源必须克服回路的感应电动势做功,即,第一步:从,过程中,外源所做的功,第二步:I1 不变,i2 从,则 t 时刻,回路1、2中的感应电动势为,若要继续充电,外源必须克服回路的感应电动势做功,即,I1 不变,i2 从,外源所做的功,总磁场能量为,推广到n个回路:,与两回路的电流及互感系数有关,称为互有能。当两个载流线圈产生的磁通是相互增加的,互有能为正;反之为负。,是回路k 单独存在时的能量,称为自有能量。自有能量始终大于零,2、磁场能量的分布,磁场能量是在建立回路电流的过程中形成的,分布于磁场所在的整个空间中。,对
3、于体电流分布情况:所以当n,有,则磁能 Wm 可表示为:,利用 的关系,,积分区域由V扩展到整个空间V。,若回路都是单匝,磁链可以用磁矢量位表示:,时,第一项为 0,表明磁能是以磁能密度的形式储存在整个场域中,单位:J(焦耳),由矢量恒等式,得,各向同性线性媒质:,例 长度为l,内外导体半径分别为 R1 与 R2 的同轴电缆,通有电流 I,磁导率均为0,试求电缆储存的磁场能量与自感。,解:由安培环路定律,得,磁能为,自感,图4.8.1 同轴电缆截面,3、磁场力,磁场能量的宏观效应就是载流导体或运动的电荷在磁场中要受到力的作用。,1.安培力,2.虚功原理(虚位移法),3.法拉第看法,虚功原理,电
4、源提供的能量=磁场能量的增量+磁场力所做的功,(1)常电流系统,假设系统中 n 个载流回路分别通有电流 I1,I2,In,仿照静电场,当回路仅有一个广义坐标发生位移 dg,该系统中发生的功能过程是,dk 将在各回路中激发出感应电动势e k,为使电流Ik不改变,各电源提供的电动势为-e k,来抵消e k的变化,广义坐标 g 发生改变,但各回路维持电流不变 Ik=const.系统磁能增量为:,dt 时刻 移动 dqk从负极到正极,各电源所作的元功为:,表明外源提供的能量,一半用于增加磁场能量,另一半提供磁场力作功,因此,得广义力,(2)常磁链系统,由于各回路磁链保持不变,故各回路没有感应电动势,电
5、源不提供(增加的)能量,即,所以,只有减少磁能来提供磁场力作功,故有,由此得广义力,在实际问题中,若求相互作用力,只需求出互有磁能,并以相对位置为广义坐标,利用上式即可得到相应的广义力。,两种假设结果相同,即,两点说明:,因为,所以,求磁场力步骤:,1、求Wm(g)或Wm互(g),并表示成对应广义坐标的函数;,2、求 或,解:系统的磁能及相互作用能为,本例的结果完全适用于磁偶极子,也是电磁式仪表的工作原理。,式中 m=I1S 为载流回路的磁偶极矩;,用矢量表示为,表示广义力(转矩)企图使广义坐标 减小,使该回路包围尽可能多的磁通。,例 试求图示载流平面线圈在均匀磁场中受到的转距。设线圈中的电流
6、I1,线圈的面积为 S,其法线方向与外磁场 B 的夹角为。,图4.8.2 外磁场中的电流回路,例 求图示正方形载流回路所受的磁场力。,解:首先计算系统的磁场能量。长直载流细导线视为一个载流回路l1,两电流回路构成的系统磁场能量为,载流回路为刚性,L1、L2、I1、I2 视为不变量,因此,上式中可能变化的是:,将,代入上式得,例 一对宽为 a 相距 h 的平行带线传输线,其中流有相反方向的电流 I。如果带线宽 ah,忽略边沿效应,求带线间单位长度上的作用力。,解:在 ah 条件下,忽略边沿效应,可以认为带线间的磁场是均匀的。利用虚位移法求解磁场力。,应用安培环路定律得带线间的磁场,带线间磁能密度,单位长度总的磁场能量:,结果 f 0 表示两板间的作用力是排斥力,广义力有使广义坐标增大的趋势,恒定磁场知识结构框图,基本实验定律(安培力定律),