大学生数学建模论文脑卒中发病环境因素分析及干预.doc

上传人:laozhun 文档编号:2304555 上传时间:2023-02-10 格式:DOC 页数:15 大小:370.50KB
返回 下载 相关 举报
大学生数学建模论文脑卒中发病环境因素分析及干预.doc_第1页
第1页 / 共15页
大学生数学建模论文脑卒中发病环境因素分析及干预.doc_第2页
第2页 / 共15页
大学生数学建模论文脑卒中发病环境因素分析及干预.doc_第3页
第3页 / 共15页
大学生数学建模论文脑卒中发病环境因素分析及干预.doc_第4页
第4页 / 共15页
大学生数学建模论文脑卒中发病环境因素分析及干预.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《大学生数学建模论文脑卒中发病环境因素分析及干预.doc》由会员分享,可在线阅读,更多相关《大学生数学建模论文脑卒中发病环境因素分析及干预.doc(15页珍藏版)》请在三一办公上搜索。

1、2012高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,

2、在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 云南民族大学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 贺国瑜 日期: 2012 年 9 月 9 日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组

3、委会评阅前进行编号):脑卒中发病环境因素分析及干预摘要目前,脑卒中已成为威胁人类生命的严重疾病之一,这种疾病的诱发已经被证实与环境因素,包括气温和湿度之间存在密切的关系。对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未患病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。同时,通过数据模型的建立,掌握脑卒中的发病率的规律,对于卫生行政部门和医疗机构合理调配医务力量、改善就诊治疗环境、配置床位和医疗药物等都具有实际的指导意义。针对问题一,本文根据病人基本信息,对2007年2010年的数据进行整合,做频率统计,得到脑卒中发病

4、率男性占54%,大于女性;农民占发病人数的45.5%,为最高发病职业,渔民仅占发病人数的0.1%,为最低发病职业;总体中60岁到89岁的发病人数占总发病人数的78.7%,为发病高危年龄段;男性60岁到74岁为发病的高危年龄段,女性75岁到89岁为发病高危年龄段。针对问题二,本文选取以月度为研究单位,采用最小二乘法对各类气象因素(气温、气压、相对湿度)与发病率进行回归分析,逐次剔除线性关系不显著的变量再做回归分析,最后得出发病人数(FBRS)与最高气温平均值(ZGQWPJZ)、最低气压平均值(ZDQPYJZ)成正相关,与平均气温(PJQW)、相对湿度(XDSD)成负相关。针对问题二,通过查阅与脑

5、卒中有关的研究资料,并结合问题1、2的结论,脑卒中发病的危险因素可以分为两大类,一类是不可改变的因素,例如:年龄、性别、种族、气候、家族病史等,另一类是可以通过干预改变的主要危险因素,如:患有疾病(高血压、心脏病、糖尿病、高脂血症)、有不良生活习惯(吸烟、酗酒)等。并针对不可改变的因素相应的提出了预警方案,对可改变的因素相应的提出干预方案。关键词:脑卒中 频数统计 线性回归 预警干预一、 问题重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。这种疾病的诱发已经被证实与环境因素,包括气温和湿度之间存在密切的关系。对脑卒中的发病环境因素进行分析

6、,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。同时,通过数据模型的建立,掌握脑卒中的发病率的规律,对于卫生行政部门和医疗机构合理调配医务力量、改善就诊治疗环境、配置床位和医疗药物等都具有实际的指导意义。数据(见Appendix-C1)来源于中国某城市各家医院2007年1月至2010年12月的脑卒中发病病例信息以及相应期间当地的逐日气象资料(Appendix-C2)。请你们根据题目提供的数据,回答以下问题:(1)根据提供的病人基本信息,对脑卒中的发病人群进行统计描述。(2)建立数学模型研究脑卒中发病

7、率与气温、气压、相对湿度间的关系。(3)查阅和搜集文献中有关脑卒中高危人群的重要特征和关键指标,结合1、2中所得结论,对脑卒中高危人群提出预警和干预的建议方案。二、 问题分析通过初步观察,有少数数据缺失记录、不符合常理规范,我们首先要对数据进行处理,方便统计及计算。分析数据中病人的基本信息,我们可以对数据中病人的性别、年龄、职业进行统计,通过对分析统计到的信息,得出脑卒中发病与性别、年龄、职业之间的关系。题目2要求找出中发病率与气温、气压、相对湿度间的关系,把因变量发病率与多个自变量存在线性关系,因此用多元线性关系做分析,并运用实际情况进行分析检验。综合上述统计分析和回归分析所得结论,结合查阅

8、和搜集到的文献中有关脑卒中高危人群的重要特征和关键指标,对脑卒中高危人群提出预警和干预的建议方案。三、 数据处理说明整个数据及分析过程使用过的软件有PASW Statistics 18.0、Microsoft Office 2010、Microsoft Office 2003。在整个过程中遇到以下问题,现介绍对其的处理方法。(1)数据中性别不符合男、女的数据不足总数据的0.1%,对错误的数据做删除处理。(2)数据中不符合题目中职业1-8类的数据,统一归类为第9类,名称为“其他或缺失”。(3)数据中年龄为小数的数据做去小数部分处理,年龄乱码、不符合正常年龄值的数据不足总数据的1.1%,对这些数据

9、做删除处理。(4)通过查阅资料可知:发病率为一定时期内一定地区内某种疾病的发病人次数占该地区总人口的比例,且总人口数一般采用年终人口数和年初人口数的算术平均值。由于数据中未给出该市每年年初、年终的总人口数,故在建模时先假设该市的人口总数的变化对该市脑卒中的发病率的影响不大,则可以用发病人次数来替代发病率。(5)没有给出相对湿度,本文采用最低湿度与平均湿度取出相对湿度。(6)通过整理发现,已给数据量较大,故本文选取月度为研究单位,并统计出四年内各气象指标的月平均值。四、 统计、建模与求解1.病人群进行频率统计及描述根据病人基本信息的统计,对脑卒中发病情况与病人性别、年龄和职业之间的关系进行描述性

10、分析,试图找出脑卒中发病情况与病人性别、年龄和职业之间的关系。1.1发病病例性别的频率统计对脑卒中发病病例信息数据性别的频率统计,得出下表数据:表1 脑卒中病例性别频率统计表对表1数据条形统计绘图,得到如下图1示意图:图1 脑卒中病例性别比例统计图假定该市男女性别比例为:1:1,结合表1、图1可以看出,发病比例中男性比例大于女性比例。得出上述结论,本文认为可能是和男性经常从事一些危险性高、环境因素复杂多变、劳动强度较高、工作压力较大的工作。1.2发病病例年龄的频率统计对脑卒中病例信息数据进行年龄和性别的人数统计,根据联合国世界卫生组织年龄段划分标准1得到如下统计表:表2 脑卒中病例年龄和性别人

11、数统计表男女总人数44岁以下1437911234845-5956423919956160-7413801103812418275-8911929124242435390岁以上4477871234根据表2数据,绘制发病病例年龄统计图,如下图2所示。图2 脑卒中病例年龄和性别人数统计图结合表2、图2可以看出,从总体脑卒中病例人数来看,60岁到89岁的年龄段人数占病例总数的比例最大。从性别来看,男性60岁到74岁为发病的高危年龄段,女性75岁到89岁为发病高危年龄段。图2的折线图表现出,在89岁以前脑卒中发病率随着年龄的增长而增加。得出上述结论,本文认为可能这可能与人类随着年龄的增大身体免疫力下降的

12、因素有关,而男性因为经常从事一些危险性高、环境因素复杂多变、劳动强度较高、工作压力较大的工作而免疫力下降的更快,从而导致男性在更低的年龄而患有脑卒中。1.3发病病例职业的频率统计对脑卒中病例信息数据进行职业类别的频率统计,得出下表数据:表3 脑卒中病例信息数据职业频率统计表对表3中各职业的频率进行条形统计图,得到如下图3示意图:图3 脑卒中病例各职业男女发病情况统计图在忽略不确定的职业前提下,结合表3、图3可以看出,农民占病例总人数的比例最大,其次为退休人员、工人,渔民和医务人员病例人数比占依次最低。得出上述结论,本文认为仍然可以用从事农民、工人的工作条件导致其身体免疫力下降的原因、而退休人员

13、脑卒中发病率高的原因则是他们大多免疫力已经开始下降。综上所述,男性更容易患有脑卒中; 60岁到89岁的年龄段人数占病例总数的比例最大,而男性60岁到74岁为发病的高危年龄段,女性75岁到89岁为发病高危年龄段。农民占发病总人数的比例最大,其次为退休人员、工人,渔民和医务人员病例人数比占依次最低。归结到最终原因,本文认为导致脑卒中高危人群发病的原因可分为两类:一是脑卒中高危人群自身身体免疫力的高低,例如:年龄、性别等,另外一类导致可导致脑卒中高危人群自身身体免疫力下降的外部因素,例如:工作环境、职业等。而这些因素又根据能否改变而分为两类。上文中所统计的职业就属于可改变因素,而年龄、性别则是不可改

14、变的因素。2关于脑卒中发病率与气温、气压、相对湿度间关系的研究下面本文将运用回归分析的方法对脑卒中发病率与气温、气压、相对湿度间关系的研究。2.1 模型建立本文采用最小二乘法对各类气象因素(气温、气压、相对湿度)与发病率进行多元线性回归分析。根据给出数据结合查阅已有研究资料,选取各类气象因素相应的量化指标。具体如下:运用发病人数(FBRS)作为发病率的量化指标;运用平均气温(PJQW)、最高温度平均值(ZGQWPJZ)、最低气温平均值(ZDQWPJZ)作为气温的量化指标;运用平均气压(PJQY)、最高气压平均值(ZGQYPJZ)、最低气压平均值(ZDQYPYZ)作为气压的量化标准;运用平均相对

15、湿度平均值和最低湿度平均值之差(XDSD)作为相对湿度的量化标准;其中发病人数被解释变量,其余为解释变量。用b0,b1,b2, b7是未知参数,用随机误差项。并做如下假定:假定1 在2007年-2010年之间,该市总人口变化对发病率的影响较小,故可忽略不计。假定2 文中不考虑的因素对发病率的影响较小,故可忽略不记。假定3 随机误差均值为0,方差 的且服从正态分布,即满足: (1)假定4 解释变量之间不存在多重共线性,即假定各解释变量之间不存在线性关系,相互独立。据上,可得出用脑卒中发病率和气温、气压、相对湿度回归分析的具体模型如下: FBRS=b0+b1PJQW+b2ZGQWPJZ+b3ZDQ

16、WPJZ+b4PJQY+b5ZGQYPJZ+b6ZDQYPJZ+b7XDSD+(2)2.1 回归分析运用数据处理时统计出四年内2007年-2010年内48个月的发病人数和相应气温、气压、相对湿度的量化值(见附件3)。运用上述数据带入上述模型中进行回归分析,的到模型1,回归过程由SPSS18.0软件来完成,回归分析结果如下表4所示。表4 模型1回归结果模型1RR 方调整 R 方F值Sig.标准估计的误差.478a.228.1152.022.085a361.7554902变量非标准化系数标准系数tSig.B标准误差(常量)-7850.2374570.746-1.717.093最高气压2.09972

17、.043.078.029.977最低气压6.62871.922.240.092.927平均温度-391.986541.141-8.919-.724.473最高温度325.288274.3107.4021.186.243最低温度73.716283.7881.696.260.796相对湿度-46.69817.570-.544-2.658.011从表4可以看出,模型1的判定系数R方较低,F值的伴随概率为0.085,没通过显著水平为0.05的检测,同时只有变量相对湿度通过显著水平0.05的t检验,说明模型1的解释力度非常低。用SPSS软件求出模型1中各解释变量的相关矩阵(见表5),通过观察该矩阵可发现

18、模型1中多组解释变量的二元相关系数较高,例如:平均气压、最高气压和最低气压之间存在非常严重的多重共线。这说明该类变量之间存在比较严重的线性相关,即存在较为严重的多重共线性,从而违反了假定4为此,对模型1进行修改,剔除同类变量中t值最小的变量,把留下的变量与发病率重新做回归,得出模型2。结果如表6所示。从表6可以看出,尽管模型2的判定系数R方与模型1相比变化不大,但其F值的伴随概率为0.023,已通过显著水平为0.05的检测,同时有变量最低气压、平均温度、最高温度、相对湿度均通过显著水平0.05的t检验,说明模型2中各解释变量与发病率存在显著的线性关系,所以模型2明显优于模型1。因此,本文采用模

19、型2的结论作为本文的研究结论,带入模型2中通过t值检验的变量的系数得出拟合具体方程如下:FBRS=-7550.504-256.037PJQW+263.204ZGQWPJZ+8.473ZDQYPJZ-47.729XDSD (3)表5 模型1中各变量的相关矩阵月发病数平均气压最低气压最高气压平均温度最高温度最低温度湿度综合月发病数10.250.250.248-0-0-0-0.3平均气压0.2511266871.999*.999*-.495*-.489*-.501*0.01最低气压0.253763911.999*1.997*-.470*-.465*-.476*0.01最高气压0.248067125.

20、999*.997*1-.518*-.512*-.525*0.01平均温度-0.010996824-.495*-.470*-.518*1.998*.998*0.03最高温度-0.009473212-.489*-.465*-.512*.998*1.991*0.08最低温度-0.011090805-.501*-.476*-.525*.998*.991*1-0湿度综合-0.2551365590.010.010.0140.030.08-01*. 在 .01 水平(双侧)上显著相关。表6 模型2回归分析结果模型2RR 方调整R方FSig.标准估计的误差.476a.227.1553.157.023a353.

21、533变量非标准化系数标准系数tSig.B标准误差(常量)-7550.5044297.559-1.757.086最低气压8.4734.207.3072.014.050平均温度-256.037125.355-5.826-2.042.047最高温度263.204125.4485.9902.098.042相对湿度-47.72916.657-.556-2.865.0062.3 结论分析在模型2中,最低气压平均值(ZDQWPJZ)、平均气温 (PJQW)、最高气温平均值(ZGQWPJZ)、相对湿度(XDSD)都通过了0.05显著性水平的检验,其中相对湿度还可以通过0.05显著性水平的检验,这说明且上述变

22、量能解释脑卒中发病率异同。从式(3)可得出结论:发病人数(FBRS)与最高气温平均值(ZGQWPJZ)、最低气压平均值(ZDQPYJZ)成正相关,与平均气温(PJQW)、相对湿度(XDSD)成负相关。这说明,脑卒中发病率随气压的降低而降低,随气温的增高而降低,随相对湿度增高而降低;注意模型2而中的最高气温结合平均温度能表征温度差的指标,在该模型中,它的实际意义是补充解释在平均温度相同的条件下,温差大的时期里,脑卒中患者的发病率增大。得出上面的结论说明脑卒中高危群体在上述气候条件下,容易患有脑卒中。这样的结论与实际情况相符:冬天时期气压高、气温低,在这个时期脑卒中的发病较高;而在春秋季节里,温差

23、大,此事脑卒中的发病率同样有可能较高。3对高危人群提出预警和干预的建议方案本节将问题一、二中所得结论,结合通过查阅和搜集文献中有关脑卒中高危人群的重要危险因素及其指标(即重要特征和关键指标)进行综合分析,找出脑卒中高危人群的重要特征和关键指标,并提出对高危人群预警和干预的方案。3.1脑卒中高危人群的重要特征和关键指标 通过查阅与脑卒中有关的研究资料,并结合本文中1、2题已得出结论,脑卒中发病的危险因素可以分为两大类,一类是不可改变的因素,例如:年龄、性别、种族、气候、家族病史等,另一类是可以通过干预改变的主要危险因素,如:患有疾病(高血压、心脏病、糖尿病、高脂血症)、有不良生活习惯(吸烟、酗酒

24、)等,下表7为人群中可改变的脑卒中的危险因素:表72 人群中可改变的脑卒中的危险因素危险因素患病率相对危险(倍)高血压25%-40%3-5胆固醇升高6%-40%1.8-2.6吸烟25%1.5无体力活动25%2.7肥胖18%1.8-2.4无症状颈动脉狭窄2%-8%2饮酒2%-5%1.6房颤(非瓣膜性)0.50%5房颤(瓣膜性)0.10%17根据本文中1、2题已得出结论,结合表7信息及本文1、2题结论,可以找出高危人群的范围:高血压或者正在服用降压药物的人群、高胆固醇血症或者正在服用降血脂药物的人群、患有疾病者、年龄超过60岁的人群、生活或工作在平均温度较低环境人群、生活或工作在湿度较低的人群、生

25、活或工作在气压较高的人群、职业为农民或工人的人群,生活或工作在气温变化较大环境的人群等。3.2脑卒中高危人群预警和干预方案上文找出了脑卒中高危人群的重要特征和关键指标,同时也找出了高危人群的范围,则可以对其进行相应的预警和干预。从上述分析中可知,脑卒中高危人群的重要特征和关键指标又可分为可改变因素和不可改变的因素。那么对不可改变的因素,我们只能进行必要的预警,对可改变的因素进行必要的干预。我们可以通过各类传媒、医疗卫生机构向社会广泛宣传如何对脑卒中高危人群进行预警和干预。下面本文将列出可预见到的预警和干预内容。3.2.1对脑卒中高危人群预警的内容(1)60岁以上人群做定期的体检,加强体育锻炼,

26、特别是对60岁的男性进行预警。(2)尽量避免气温低、气压高、湿度低温差大的环境下生活或工作。(3)户外气温变化较大的时间内尽量减少外出活动。(4)那些携带脑卒中疾病遗传基因的种族或家庭应当关注自己的身体,以便及时的防范脑卒中的发病。(5)对那些天生身体免疫力差的群体应当关注自己的身体,以便及时的防范脑卒中的发病。3.2.2对脑卒中高危人群干预的方案(1)对于那些高血压、高胆固醇血症、糖尿病患者人员的干预内容:首先,应注意加强体力和体育锻炼;其次,注意控制饮食,主要是应限制高胆固醇、高脂肪饮食的摄入量,以减少脂类物质在血管内沉积;做定期的体检及药物治疗及定期体检等。(2)对于那些有不良生活习惯的

27、人员的干预内容就是通过劝导,使其改变不良生活习惯,例如:戒烟、忌酒等。(3)对于那些生活工作压力大的群体进行必要的心理引导,使其心理压力得到释放。五、 模型的评价与推广1.针对问题1中的频数统计的评价1.1优点:(1)操作步骤分明,易于理解。(2)统计后能清晰的表现出性别、年龄、职业与脑卒中发病率之间的关系。(3)统计数据全面,分析结果比较符合事实情况。1.2缺点:(1)分析工具较为单一,不利于复杂数据的分析。(2)单独做描述性统计分析,不一定能得到全面1.3模型推广频率统计可以广泛用在生活中许多方面,对某个多发数据进行统计,得出影响被解释变量的因素。2. 针对线性回归分析法与线性回归模型做评

28、价2.1优点:模型2把与气候相关的7个变量纳入同一个模型,从而尽可能多的解释了各类气候因素对脑卒中发病率的影响。2.2缺点:模型2遗漏了除气候因素以外的影响因素,例如:慢性疾病、不良生活习惯、心理压力大等,从而导致对模型的拟合优度(调整系数)的值较低。2.3模型推广线性回归模型主要解决寻找因变量与自变量之间存在的关系,自变量可以是一个或是多个,能够用在各行业对通过对收集数据的分析,来预测结果六、 参考文献1 天使在狂喜,划分年龄段方法,52ea551810a687b1.html,2012年9月9日。2 滴滴zzw,脑卒中筛查及干预工程, 3554abfe770bf78a65295473.htm

29、l,2013年9月9日。3 李子奈,潘文卿,计量经济学,北京:高等教育出版社,2005年。4 薛薇,SPSS统计分析方法及应用,北京:电子工业出版社,2004年。5 脑卒中02的BLOG,中国脑卒中流行特征和人群干预研究进展,6 方宁,向旭东,气象条件对脑卒中影响的研究进展,长沙医学院学报:第25卷,第3 期,237-239页,2011年。七、 附件附件1 各职业男女发病人数统计表职业男女合计人数比例人数比例人数比例农民145990.439597150730.529249296720.480985573工人31050.09349617430.06120148480.078586481退休人员4

30、1190.12402925080.08806266270.107424218教师1630.004908530.0018612160.003501321渔民430.001295230.000808660.001069831医务人员650.001957250.000878900.001458836职工5120.0154172210.007767330.01188122退离人员11810.0355625700.02001417510.028381554空缺及其他94230.2837482640.290169176870.28667985附件2 各职业男女发病人数统计表男女总人数44岁以下143791

31、1234845-5956423919956160-7413801103812418275-8911929124242435390岁以上4477871234附件3 2007年-2010年每个月发病人数及各气象指标平均值统计表月发病数平均气压最高气压最低气压平均温度最高温度最低温度平均湿度最低湿度湿度综合9361028.231030.341026.254.508.041.8773.2351.1622.06732952.67955.30949.928.1412.754.6766.0743.0023.0710181018.301021.301015.0011.5715.937.9569.2848.58

32、20.7010691016.501019.301014.0015.3720.3411.2962.5738.1724.4010721008.401010.801005.8022.6227.6418.4961.7739.3922.391033973.71975.26972.0423.8927.2821.4173.0757.1915.8710131003.001004.801001.2029.3933.6526.2972.3255.4216.9011951004.901006.701003.0029.5633.6026.6169.1051.0018.1012211010.501012.301008.

33、7024.3028.0621.6676.0760.7715.3013571018.951020.951017.0819.3423.4816.0571.6551.9719.6812261024.121026.141022.1212.5717.038.9362.0345.4316.6013701023.461025.881021.287.9311.085.2067.7758.848.9418261027.231029.811024.603.136.220.8357.5255.232.2919551027.631030.151025.012.997.60-0.5957.9042.7915.10191

34、81018.811021.301016.1911.0815.977.0157.9736.6121.3517561014.611017.141011.7615.6319.9512.1062.4346.6315.8017721008.551010.801006.1821.4126.8117.0466.2640.4225.8414941005.581007.611003.5423.4926.8121.0582.3766.5315.8314981003.671005.261001.7530.1734.4426.8171.3251.2620.0613731005.851007.521004.2128.0

35、131.9624.9477.3257.1320.1912821011.251012.961009.5324.9528.9822.1276.8756.7120.1613951018.191020.251016.3019.9123.7016.8277.1955.7421.4514671023.181025.341021.0912.0716.168.6575.5750.9324.6313081025.051028.341022.116.8011.652.7165.5539.9725.588731027.671030.251024.752.967.28-0.3769.6547.0322.6184810

36、19.561022.721016.058.3011.405.7179.4663.5415.938301019.441022.761016.1610.0014.186.1770.9449.2921.658601015.681018.191012.9915.9120.8111.6667.3042.3025.008731012.131014.121009.8521.6127.3416.7261.2634.5226.747951003.391005.061001.4626.0230.7022.5074.3751.7322.639311003.831005.541002.0428.4432.3625.1

37、075.1356.6118.529311005.851007.501004.1827.5531.0425.2681.5565.0016.55828979.47981.04977.9023.5526.8921.0277.4260.7116.717581016.841018.781015.0220.4425.0716.5069.5542.3527.196621023.441026.011020.6911.0315.197.9777.4056.8720.537991024.571027.041022.135.559.332.5471.9050.5821.3217661025.751029.01102

38、2.314.448.871.0370.9450.6120.3214921020.671023.581017.646.9410.883.8174.6855.4319.2517261020.371024.051016.598.7513.105.4470.8151.1019.7117001017.881021.361014.3312.5216.769.0269.5750.4019.1718881009.791011.811007.6020.7125.1617.1368.3946.5521.8416601007.641009.111006.0423.7027.5320.7676.4056.9719.4

39、317581005.221006.791003.5628.5932.6125.8475.5858.1317.4516861007.471009.211005.6430.4334.9426.9771.5851.6519.9416391011.511013.201009.8625.5529.3422.6777.2058.4718.7317161018.851020.761017.0318.0622.1014.6774.2952.1022.1915101021.941024.121019.7512.9917.958.6968.9042.4326.4710791020.241023.291016.926.9412.023.0862.2338.5223.71

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号