卷取软件说明(中文)n课件.ppt

上传人:小飞机 文档编号:2330726 上传时间:2023-02-11 格式:PPT 页数:106 大小:995KB
返回 下载 相关 举报
卷取软件说明(中文)n课件.ppt_第1页
第1页 / 共106页
卷取软件说明(中文)n课件.ppt_第2页
第2页 / 共106页
卷取软件说明(中文)n课件.ppt_第3页
第3页 / 共106页
卷取软件说明(中文)n课件.ppt_第4页
第4页 / 共106页
卷取软件说明(中文)n课件.ppt_第5页
第5页 / 共106页
点击查看更多>>
资源描述

《卷取软件说明(中文)n课件.ppt》由会员分享,可在线阅读,更多相关《卷取软件说明(中文)n课件.ppt(106页珍藏版)》请在三一办公上搜索。

1、卷取机控制系统介绍,卷取基础,术语和定义,中心卷取,也被称做有心卷取机,指设备的旋转力施加在卷材卷取的中心或卷轴上,目标 是调节卷材表面的张力卷轴的速度和转矩必须按照卷径的函数变化,卷取基础 公共术语和定义,公共术语芯轴:板材卷绕的对象,最小的芯轴直径是卷取机开始的最小直径或开卷机能达到的最小直径。最大卷径:设计的最大卷径。卷径比:最大卷径和芯轴直径的比。1850轧机最大卷径是1900mm、心轴直径是508mm,卷径 比是3.74:1。满卷:在卷取应用中这是最终的卷材直径。在开卷应用中这是要开卷的开始卷径。,卷取基础 公共术语和定义,公共术语卷材:用卷取机卷取的产品(材料),也被称做带材。可延

2、展:指在长度和宽度上有弹性的卷材,例如:塑料食品包装。不可延展:指在长度和宽度上不能延伸的卷材,例如:纸。,卷取基础公共术语和定义,公共术语张力:施加在带材上的力。用于控制带材,张力的单位是牛顿。张应力:带材横断面单位面积上的张力,张应力的单位是兆帕。张力梯度:给定张力是卷径的函数,随着卷径增加,张力减少。静张力:“静”指卷取机速度达到或接近零速。当静张力有效时,张力给定值降低到张力设定值的一个预先设定的百分值。,卷取基础公共术语和定义,公共术语速度控制:传动装置调节卷取机的速度,带材的张力的控制根据张力反馈通过调整速度来实现。转矩控制:传动装置调节卷取机的转矩给定,如果使用张力反馈,转矩给定

3、按照张力反馈来调节。转动惯量(GD2):用于计算卷取机速度变化时的转矩。公式包括加速的重量和尺寸,另外,单位时间的速度改变 或(n/t),也需要用来计算转矩。,卷取基础公共术语和定义,公共术语卷径计算:计算中心卷取机直径的公式或过程。中心卷取机应用通过带材线速度和实际卷材的转速来计算卷材的卷径.,卷取基础 公共术语和定义,其它术语张力范围卷材速度电动和发电,卷取基础 公共术语和定义,基本卷取软件包括间接张力控制 可选择的卷取和开卷模式主要控制功能包括卷径计算张力卷径给定转动惯量计算加速/减速转矩补偿空载补偿,卷取基础 公共术语和定义,卷取机公式,卷取基础 卷取机公式,F=张力M=转矩V=带材线

4、速度n=转速W=角速度B=带材宽度D=直径JR=转动惯量JR1=卷轴转动惯量JR2=卷材转动惯量JR3=齿轮箱转动惯量JM=电机转动惯量JC=全部转动惯量(电机侧),卷取基础 卷取机公式,V,1.卷取所需功率,Pmax=Fmax*Vmax/102 KW,2.张力和转矩的关系M=FxD/2 Nm:卷筒侧卷取转矩Mm=FxD/2Z Nm:电机侧卷取转矩,3.最大和最小转矩(不考虑转动惯量),Mmax=Fmax*Dmax/2Z NmMmin=Fmin*Dmin/2Z Nm,卷取基础 卷取机公式,4.最大和最小的电机转速,卷取基础 卷取机公式,5.转动惯量,来自电机的转矩用于产生张力,也用于克服所需要

5、的惯性,系统总的转动惯量=(卷材的转动惯量+卷筒的转动惯量+齿轮箱转动惯量+电机转动惯量)折合到电机轴,卷取基础 卷取机公式,卷轴转动惯量,卷材转动惯量,齿轮箱转动惯量通常由机械供应商提供,电机转动惯量电机手册提供电机转动惯量,卷取基础 卷取机公式,电机产生的总转矩 Mm=Mm=+MM1+MM2+MM3+空载补偿,Mm=,固定部分,可变部分,卷取基础 卷取机公式,卷取基础 卷取机公式,功率和卷材的关系,卷取机和重卷机的控制组成,间接张力控制不需要张力反馈装置有张力反馈的直接闭环张力控制带材张力通过一个张力传感器直接测量张力控制可以通过在间接张力控制基础上调整或者用于在速度模式下控制传动系统带张

6、力辊的直接闭环张力控制张力辊位置反馈用作闭环反馈传动装置保持在速度控制 卷取机作为速度基准带材张力通过其它设备控制后张力实现卷取机工作在速度控制方式下,卷径计算保证带材外部线速度不变,卷取基础 配置,间接和直接张力控制,Tensiometer,卷取基础 配置,Tension to TQ cal,a)没有实际张力反馈系统b)使用实际张力反馈,卷取基础 配置,适用间接张力控制的场合 直接耦合卷取(无减速箱)机械损耗低。(无蜗杆减速机,齿轮箱摩擦损耗不随温度有大的变化)动态转矩 TQ 和张力转矩TQ 之比较小。张力范围较小(小于 10:1),间接张力控制,转矩按照前面的公式计算不使用实际张力测量仪卷

7、径需要准确计算来控制合适的张力摩擦和动态补偿的计算对于维持稳定的张力是至关紧要的,卷取基础 组成,张力控制-开环转矩传动装置是转矩调节。需要从上位控制器给出速度给定用于超速度控制。转矩给定按照张力设定和机械参数计算比例积分控制器在这种方式下无效,因此转矩给定没有任何调整张力控制通过计算需要的转矩实现。推荐精确调整系统参数,卷取基础 组成,间接张力控制-开环转矩推荐使用:传感器-实际张力反馈不适用卷材宽度和比重相对固定。精确的系统数据和卷材转动惯量可以获得。张力范围较小。,卷取基础 组成,推荐用于直接张力控制的场合 需要很高张力精度 机械损耗很高 张力范围很大(如20:1),直接张力控制,转矩按

8、照前面的公式计算 为测量实际张力需要一个反馈装置,用在修正转矩给定的外层控制环路卷径仍需要精确计算来控制合适的张力因为可以通过反馈闭环来修正张力,摩擦和补偿不需要很精确,卷取基础 组成,直接张力控制,通过速度进行直接张力控制,通过转矩进行直接张力控制,卷取基础 组成,张力控制 速度闭环调整传动装置工作在速度模式,速度主给定来自上级控制器。速度调整用语控制实际的带材张力,张力控制器输出作为速度补偿张力控制器是一个比例-积分控制器,接受来自操作手的张力给定和来自过程的实际张力反馈。卷径通过线速度和传动的转速来计算惯性补偿可以加入来改善控制系统的动态响应。(摩擦损耗和动态补偿可以通过闭环系统自动补偿

9、),卷取基础,组成-通过调速实现直接张力控制,卷取基础,组成-带速度调整的直接张力控制,Tq 转速控制输出,nRef,FRef,+,张力控制器,-,Fact,nact,Controlleradaptation,-,D,Gain,D,Gain,带材类型(厚度/宽度),x,F(D,V),Macc,用于 TQ给定,速度调整,带速度调整的直接张力控制框图,速度控制器,直接张力控制-闭环速度调整推荐使用:带材品种范围很宽并且有延伸性.可能/需要大范围的带材 宽度变化不能获得准确的惯性参数不需要“拉紧”控制,卷取基础,组成-带速度调整的直接张力控制,张力控制-闭环转矩调整传动装置工作在转矩模式,速度给定从

10、上级控制器得到用于过速度控制转矩给定通过张力给定和从键盘上输入的设备参数来计算。转矩调整用于控制带材实际张力,张力控制调整作为转矩校正量相加。张力是一个比例积分控制器,接收来自操作手的给定值和过程实际张力的反馈。,卷取基础,组成-带转矩调整的直接张力控制,Tq速度控制 输出,速度给定nRef,FRef,+,张力控制器,速度控制器,-,Fact,Nact实际速度,控制器切换,-,D,Gain,D,Gain,带材类型(厚度/宽度),x,F(D,V),Macc,用于 TQ 给定,带转矩调整的直接张力控制框图,卷取基础,组成-带转矩调整的直接张力控制,直接张力控制-闭环转矩调整推荐使用:大的动态响应。

11、带材尺寸在宽度和密度上变化很小。能获得精确的系统和惯性数据。能获得张力反馈,卷取基础,组成-转矩调整的直接张力控制,张力辊控制,卷取基础组成-张力辊控制,机械组成固定的后张力系统 可变的后张力系统,固定张力系统,可变张力系统,卷取基础组成-张力辊控制,张力辊控制传动工作在速度方式.速度给定来自上级过程控制器。速度调整用于控制张力辊位置。张力辊控制器调整是作为速度校正的一个相加量。张力辊控制器是一个比例积分控制器,接收来自键盘输入给定和过程张力辊位置反馈。,卷取基础组成,Tq 速度控制输出,nRef,PRef,+,比例调节器,速度调节器,-,Pact,nact,控制切换,-,D,Gain,D,G

12、ain,带材类型(厚度/宽度),张力辊控制-速度控制和速度校正-固定张力系统框图,x,F(D,V),Macc,用于 TQ 给定,卷取基础 组成,怎样调节张力?卷取机的张力调节是通过调节张紧辊的位置和“张紧力”来实现的。,卷取基础组成固定张力,张力辊控制 速度控制和速度校正-可变张力系统框图,卷取基础组成-张力辊-可变张力,Tq 速度控制输出,nRef,PRef,+,比例控制器,速度控制器,-,Pact,nact,控制器切换,-,D,Gain,D,Gain,带材类型(厚度/宽度),x,F(D,V),Macc,用于 TQ 给定,正常固定参数,张力设定,静张力和张力梯度给定,负载有缸,力,伺服阀(I

13、/P),卷取基础组成做功方向,带材流向,带材流向,带材流向,带材流向,开卷机,卷取机,1,2,3,4,卷取机选定,选择能提供最佳的齿轮箱和速度的机械供应商,卷取基础选定,选择合适的电机,了解负载的要求,分析负载要求,用户怎样确定自己的负载(代表性的)30KW,800rpm/1500rpm,150%overload General一般原理 Interpretationa)恒转矩应用,基速以上恒功率。b)Requirement is to deliver at base speedc)Generally the required torque below base speed is samed)S

14、pecified overload of 150%is required at all speed points,卷取机基础尺寸选定-负载要求,Graphical Interpretation of the specified Load30KW,800 rpm/1500 rpm 150%overload,Constant TQ,TQ requirement proportional to,Winder BasicsDimensioning-Load Requirement,To optimize the Winder it is important to know other informat

15、ion Process ParametersTension ranges-Stall tension and Taper Tensions rangeDiameter Ratios for specified materialsPeripheral speed-Crawl/thread speed,Max speed,Operating speedsAcceleration and deceleration ratesGear RatiosMaterial Specific Wt and density,E.g.Tension range:Material type 1:5 KN,materi

16、al thickness=3mm Material type 2:1 KN,material thickness=0.5mmDiameter Ratio:Min 600 mm Max:1500 mmLine speed max=300 mpm,Minimum speed=60 mpmOperating speed=250 mpmAcceleration rates=20 sec to full speed/fast stop=10sec from full speedmaterial width=800 mm,density=1100 kg/m3,Winder BasicsDimensioni

17、ng-Load Requirement,Calculating the Min and max values,Winder BasicsDimensioning-Load Requirement,Calculating the minimum speed point,The minimum rotational speed point is calculated by using the minimum linear operating speed at the maximum diameter.The minimum linear operation speed is the speed a

18、t which the winder may run continuously for a extended period of time.This does not have any effect on dimensioning when a separately ventilated motor is used.,M2BA 315 SMA8,Nmin in this example=125 rpmLine stops before max dia is reached!,Winder BasicsDimensioning-Load Requirement,Motor selected=M2

19、BA 280 SMB 6,If the minimum operating speed was about 200rpm the selected motor could have been reduced by 1 frame size!,Winder BasicsDimensioning-Load Requirement,Calculating the Torque at different speed points,Calculation based on Tset=Tmax conditions,Winder BasicsDimensioning-Load Requirement,Ca

20、lculating the Torque at different speed points,Calculation based on Tset=Tmin conditions,Winder BasicsDimensioning-Load Requirement,Calculating based on Tset=Tmax conditions,Calculating the Torque at different speed points,Winder BasicsDimensioning-Load Requirement,Calculating based on Tset=Tmax con

21、ditions,Calculating the Torque at different speed points,Winder BasicsDimensioning-Load Requirement,Calculating the Torque at different speed points,Calculation based on Tset=Tmin conditions,Winder BasicsDimensioning-Load Requirement,Calculating the Torque at different speed points,Calculation based

22、 on Tset=Tmin conditions,Winder BasicsDimensioning-Load Requirement,Results:The max and minimum required load torques for the process demand are 30 Nm to 395 Nm depending on the tension set-point and the acceleration/deceleration phases.Overload requirements can be accurately identified.All the spee

23、ds(base and maximum speeds are accurately determined),The maximum and minimum load torque has to be supplied by the same drive+motor set.Minimum resolutions and accuracy of controlwill start to be important considerations Overload and minimum operating speeds affect the motor selection,Winder Basics

24、Dimensioning-Load Requirement,Rule 1:The motor should not be over-dimensioned.Over-Dimensionedmotors will increase the inverter size which in turn effects the current resolution of the drive.Wide tension ranges will not be attainable The ability of the inverter to maintain the requested motor torque

25、 is stated asa%of the nominal torque of the motor.Increasing the motor torque way beyond the load requirements reduces the accuracy of tension/torque control,Rule 2:Motor overload characteristics are proportional to I/N2.Load torque requirements are proportional to 1/N.Therefore the overload require

26、ments may often lead to the next frame size of the motor.Check the overload requirements carefully such a case.Generally Windersoverloads are needed during the fastest stop or acceleration and can be calculated!Reducing(Convincing the customer)the acceleration/deceleration rates by a small percentag

27、emay be a better solution then over-dimensioning the motor to fulfil this requirement.,Winder BasicsDimensioning-Selecting the Motor,Motor Load torque and the maximum loadibility of the motor,Winder BasicsDimensioning-Selecting the Motor,Rule 3:Check the minimum rotational speed of the motor.This cr

28、iteria leads to a bigger motor in self ventilated motors.Minimum rotational speed for the motor is at minimum operational speed and at the maximum diameter.The problem with the motor loadibility curve is only when the maximum tension isrequested and the maximum designed diameter is used.,Winder Basi

29、csDimensioning-Selecting the Motor,Winder BasicsSelecting the motor+Gearbox,Using the same process example,Winder BasicsSelecting the motor+Gearbox,We are free to choose the gearbox!We know the power requirement-say 30KW,150%overloadWe know the speed ratio=2.48this implies that the motor runs into f

30、ield weakening up to about 2.5 times.Choose the motor based on Easiest availabilityBest torque curve fittingChoose the gearbox based on the speeds=,Winder BasicsSelecting the motor+Gearbox,Using the Application Checklist Form,Winder BasicsDimensioning,Winder BasicsDimensioning,Winder BasicsDimension

31、ing,Center Winder TrainingApplication SoftwareImplementation,Integration of the Winder ApplicationStandard and Multidrive,Winder Application,Dancer ControlThe drive is speed regulated.The parent speed reference comes from the process line controller.Speed Trim is used to Control Dancer Position.The

32、Dancer Controller output is added as a speed correction.The Dancer Controller is a PI controller receiving a setpoint reference which is a constant from the keypad and receiving a feedback of Dancer position from the process.,Winder Application Configuration,Tension Control-Closed Loop Speed TrimThe

33、 drive is speed regulated.The parent speed reference comes from the process line controller.Speed Trim is used to control the actual tension of the web.The Tension Controller output is added as a speed correction.Tension Controller is a PI controller receiving setpoint reference from an operator con

34、trol and receiving a feedback of actual tension from the process.,Winder Application Configuration,Tension Control-Closed Loop Speed TrimRecommendation for Use:If the material range is wide and extensive.If a large range of Web Widths are possible/required.Accurate Inertia data is not available.Tran

35、sducer feedback is required.,Winder Application Configuration,Tension Control-Closed Loop Torque TrimThe drive is torque regulated.The parent speed reference is required from the process line controller for over speed control.The torque reference is calculated by the application based on tension set

36、point and machine parameters entered at the keypad.Torque Trim is used to control the actual tension of the web.The Tension Controller output is added as a torque correction.Tension Controller is a PI controller receiving setpoint reference from an operator control and receiving a feedback of actual

37、 tension from the process.,Winder Application Configuration,Tension Control-Closed Loop Torque TrimRecommendation for Use:Greater dynamic response.Web dimensions are basically constant with minimal variations in width and density.Accurate system and material Inertia data is available.Transducer feed

38、back is required.,Winder Application Configuration,Tension Control-Open Loop Torque The drive is torque regulated.The parent speed reference is required from the process line controller for over speed control.The torque reference is calculated by the application based on tension setpoint and machine

39、 parameters.The PI controller is NOT active in this mode and therefor there is not any trim of the torque reference.Recommendation for Use:Transducer-Actual tension feedback is not availableWeb dimensions are constant with limited variations in width and density.Accurate system and material Inertia

40、data is available.Stall tension is not required.,Winder Application Configuration,Dancer ControllerActivation of the Dancer Controller is selected via parameter.Parameter selectable Dancer Position Feedback.Automatic Centering of the Dancer.The Dancer position of regulation is defaulted to the cente

41、r of its maximum travel.This may be adjusted with the Center Offset parameter.,62:5 Dancer Ctl Enable,PI,Regulator ReleaseReferenceFeedback,AI 1 AI 2 AI 3 XT AI1 0V XT AI2 0V XTAI2-10V,62:7 Dancer FDBK Input,NOT SEL ENABLE DI 2 DI 3 DI 4 DI 5 DI 6 XT DI1 FIELDBUS,62:10 Max Dancer Travel2,62:11 Cente

42、r Offset,div,add,&,Running,Winder Application Parameters,Dancer ControllerP-Gain Min and P-Gain Max:P-Gain of controllers are adjusted as a function of diameter.As diameter increases the P-Gain of the Controller is increased linearly to P-Gain Max for improved regulation as diameter is changed.Two s

43、electable web configurations.Each parameter for WEB 1 and WEB 2 are(infinitely)adjustable.Two(2)sets of PI gains for Dancer controllers.,62:13 Web Selection 62:1 P-Gain 1 Min 62:14 P-Gain 2 Min 62:2 P-Gain 1 Max 62:15 P-Gain 2 Max 62:3 Integ Time 1 62:16 Integ Time 2,Diameter,K,PI,K,I,X,62:4 Range A

44、djust,Stall Mode Enable,Winder Application Parameters,Tension ControllerActivation of the Tension Controller is selected via parameter.Parameter selectable Tension Setpoint.The actual Tension Reference is a calculation including selection of Tension Setpoint,Stall Tension,and Taper Tension based on

45、roll diameter.Taper Tension:Reduction of tension reference as a function of diameter.Parameter selectable Tension Feedback(Transducer).Actual Feedback signals must be connected via Analogue Inputs.,Winder Application Parameters,Tension Controller-TorqueTension Control Mode selection.(Speed Trim,Torq

46、ue Trim,or Torque No-Trim)The selections for Tension Control Mode are(Torque Ctrl or Speed Ctrl).An additional parameter selection is required to select the operation of Torque Ctrl.Torque Control can be activated in Open Loop when Speed Control is the selected control mode.This is for special appli

47、cations which require Tension trim in Speed ctrl and an additional Torque only mode,(Special load share applications).When in speed control the normal selection of the Torque Trim Sel parameter is Tentorq Trim.,Winder Application Parameters,Inertia Compensation-WKThe calculation for Torque required

48、due to speed change per time change(n/t).Parameters for Motor and Gearing inertia.Parameters for calculation constant system inertia.Can be deactivated in Speed control mode.Two selectable web configurations.Each parameter for WEB 1 and WEB 2 are(infinitely)adjustable.Selection of Web 2 is done in t

49、he Dancer or Tension parameters.Two(2)Web width parametersTwo(2)Web density parametersRecommendation for Use:Required for all torque control modes and recommend for improved performance in speed control modes.,Winder Application Parameters,Diameter CalculationThe calculation of the diameter is a fun

50、ction of line speed and winding roll rpm.Starting Diameter Values:The starting diameter can be preset using digital inputs or FieldBus.These inputs can be used to trigger a selection of three(3)parameter preset diameters.The first being Minimum core for a Winder or Maximum roll for an Unwind.The sta

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号