《变电站综合自动化分层分布式设计.doc》由会员分享,可在线阅读,更多相关《变电站综合自动化分层分布式设计.doc(24页珍藏版)》请在三一办公上搜索。
1、精选优质文档-倾情为你奉上 课程设计报告电力系统自动化课程设计专 业:班 级:姓 名:学 号:指导教师: 2014年 12 月 指导教师评语及成绩评定表指导教师评语成绩设计过程(40)设计报告(50)小组答辩(10)总成绩(100)指导教师签字: 年 月 日专心-专注-专业目 录摘 要从国内外变电站综合自动化系统的发展过程来看,其结构形式有集中式、分层分布式和全分散式等三种类型。此次设计主要对分层分布式进行设计。相对传统的变电站面微机化的综合自动变电站,是以微机化的二次设备取代了传统使用的分立式设备。集继电保护、控制、监测及远动等功能为一体,实现了设备共享,信息资源共享,使变电站的设计简捷、布
2、局紧凑,实现了变电站更加安全可靠的运行。同时系统二次接线简单,减少了二次设备占地面积,是变电站二次设备以崭新的面貌出现。关键词: 变电站 分层分布式 综合自动化1变电站综合自动化设计简述 1.1变电站综合自动化基本概念变电站综合自动化是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能的组合和优化设计,利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。变电站综合自动化系统,即利用多台微型计算机和大规模集成电路组成的自动化系统,代替常规的测量
3、和监视仪表,代替常规控制屏、中央信号系统和远动屏,用微机保护代替常规的继电保护屏,改变常规的继电保护装置不能与外界通信的缺陷。因此,变电站综合自动化是自动化技术、计算机技术和通信技术等高科技在变电站领域的综合应用。变电站综合自动化系统可以采集到比较齐全的数据和信息,利用计算机的高速计算能力和逻辑判断功能,可方便地监视和控制变电站内各种设备的运行和操作。变电站综合自动化系统具有功能综合化、结构微机化、操作监视屏幕化、运行管理智能化等特征。变电站综合自动化系统的出现是电网运行管理中的一次变革。它为变电站实现小型化、智能化、扩大监控范围以及为变电站的安全、可靠、合理、经济运行提供了数据采集及监控支持
4、,同时为实现高水平的无人值班变电站管理打下了基础。此外,变电站综合自动化也是电网调度自动化基础,只有通过厂站自动化装置和系统向调度自动化系统提供电网中各个变电站完整可靠的信息,调度控制中心才可能了解和掌握整个电力系统的实时运行状态和变电站设备工况,也才能对其控制、调整做出决策;同样,也只有依靠变电站的自动化装置才能完成调度控制中心发出操作命令,实现远方控制。因此,可以说一个完整的、先进的、可靠的变电站综合自动化,是建立一个先进的、高水平的电网调度自动化的前提和基础。 1.2变电站综合自动化现状变电站是电力系统中不可缺少的重要环节,随着电压等级的提高,供电范围的扩大,输电容量的增大,采用传统的变
5、电站及其控制技术越来越难满足电力系统降低投资、提高效益的发展要求。研制和开发以计算机技术和网络通信技术为基础的、各种电压等级的变电站综合自动化系统,取代、更新和改造传统的变电站二次系统,逐步实现无人值班和调度自动化,以适应现代电力系统管理模式的需求。目前,变电站综合自动化系统的硬件的组织结构,分为集中式、分层分布式两大类。近年来随着网络技术的发展,分层分布式结构已成为变电站综合自动化系统的主流。该结构是将集测量、保护、远动等于一体的微机型测控保护装置分别安装在变电站一次设备间隔中,如开关柜内,这样二次线路大大减少,只有用于通信的网络线缆或光缆。其最大的优点就是减少了二次线缆抗干扰能力提高,同时
6、二次设备数量大大降低,减少了变电站的占地面积。此外,分布式分层结构对工业现场、执行机构实现分级控制管理,使数据采集与机械控制实现集散控制集中管理,真正做到控制过程的实时在线,完成柔性化管理,有很好的兼容性、可靠性和可观测性,且互换性强,容易优化。变电站综合自动化系统使用分层分布式结构后,对网络通信功能提出了更高的要求。各间隔层装置与站控层之间所有的控制命令、数据传递、信息交换都要通过数字通信来实现。因此通于网络通信的实时性要求,可靠性要求就更高更强。传递方式主要可分为星形式、总线式以及环形网三种。星形的优点是可靠性高,任何一支路断线仅会影响一个分支的信息交换,但是布线较多。总线式的特点是经济、
7、连线简便、抗干扰能力强。但是,在总线上某处出现断开或接头松动时,将影响该断点以下的信息通信。环网通信的优点是,当环形网上产生断点时,可以从反向通信,从而提高了可靠性。在变电站自动化系统中,变电站运行参数、运行状态、事件记录等数据信息都存放在数据库中,数据库是变电站实现测量、控制、远动、管理自动化的基础。因此,优良的数据库体系,对提高整个变电站自动化系统的工作效率,保证系统的稳定运行起到至关重要的作用。变电站综合自动化系统中的数据库结构一般由实时数据库和历史数据库两部分构成,现在出现的内存数据库以其存储速度上的优势也逐渐被应用到电力自动化系统的数据存储体中,与实时数据库和历史数据库配合使用。今后
8、变电站自动化的运行模式将从无人值班,有人值守逐步向无人值守过渡。因此遥视警戒技术(防火、防盗、防渍、防水汽泄漏及远方监视等)将应运而生,并将得到迅速发展。随着计算机和网络通信技术的发展,站内RTU几TU或保护测控单元将直接上网,通过网络与后台机(上位机)及工作站通信。取消传统的前置处理机环节,从而彻底消除通信“瓶颈”现象。 1.3变电站综合自动化发展趋势计算机网络通讯技术和微机实时技术在电力系统变电站自动化系统中的应用,为进一步提高变电站的自动化水平开辟了新途径。建立一个监视控制自动化、管理信息化、实时信息共享的变电站综合自动化系统已成为发展趋势:(1) 系统从集中控制、功能分散型向分散网络型
9、发展。(2) 设备安装就地化、户外化。(3) 测量、控制设备向通用化、规范化发展。(4) 通讯网络协议标准化。(5) 系统信息交换、共享范围进一步扩大。(6) 变电站综合自动化系统安全体系不断升级。 1.4设计范围微机保护和控制在电力系统中德奥了广泛的应用,变电站综合自动化系统取代传统变电站二次系统,以及成为了当前电力系统发展趋势。本设计要求对小型的变电站综合自动化系统,了解变电站综合自动化系统的结构和组成方式。对变电站综合自动化现状及存在的问题进行基本阐述,通过对比使用分层分布式结构进行变电站综合自动化系统部分的设计。2变电站综合自动化系统的结构及应能实现的功能 2.1变电站实现的功能 2.
10、1.1微机保护微机是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护实现故障记录、存储多套定值、适合当地修改定值等功能。微机保护的优越性:1易于解决常规保护装置难于解决的问题,使保护功能得到改善;2灵活性强,可以缩短新型保护的研制周期;3综合判断力强;4性能稳定,可靠性高;5保护的灵敏性高;6体积小,功能全;7运行维护工作量小,现场调试方便。微机保护主要包括对输电线路的微机保护、变压器的微机保护、电力电容器微机保护。 2.1.2数据采集 状态量采集:状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信
11、号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。保护动作信号则采用串行口(RS-232或RS485)或计算机局域网通过通信方式获得。模拟量采集:常规变电站采集的典型模拟量包括:各段母线电压,线路电压,电流和功率值。馈线电流,电压和功率值,频率,相位等。此外还有变压器油温,变电站室温等非电量的采集。模拟量采集精度应能满足SCADA系统的需要。脉冲量:脉冲量主要是脉冲电度表的输出脉冲,也采用光电隔离方式与系统连接,内部用计数器统计脉冲个数,实现电能测量。 2.1.3事件记录和故障录波测距 事件记录应包含保护动作序列记录,开关跳合记录。其SOE分辨率一般在110ms之间,以满
12、足不同电压等级对SOE的要求。变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。 2.1.4控制和操作闭锁 操作人员可通过CRT屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。操作闭锁应具有以下内容:1.电脑五防及闭锁系统。2.根据实时状态信息,自动实现断路器,刀闸的操作闭锁功能。3.操作出口应具有同时操作闭锁功能。4.操作出口应具有跳合闭锁功能。 2.1
13、.5同期检测和同期合闸该功能可以分为手动和自动两种方式实现。可选择独立的同期设备实现,也可以由微机保护软件模块实现。 2.1.6电压和无功的就地控制 无功和电压控制一般采用调整变压器分接头,投切电容器组,电抗器组,同步调相机等方式实现。操作方式可手动可自动,人工操作可就地控制或远方控制。无功控制可由专门的无功控制设备实现,也可由监控系统根据保护装置测量的电压,无功和变压器抽头信号通过专用软件实现。 2.1.7数据处理和记录历史数据的形成和存储数据处理和记录历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:1.断路器动作次数。2.断路器切除故障
14、时截断容量和跳闸操作次数的累计数。3.输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间。4.独立负荷有功、无功,每天的峰谷值及其时间。5.控制操作及修改整定值的记录,根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。 2.1.8系统的自诊断功能系统内各插件应具有自诊断功能,自诊断信息也象被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心。 2.1.9与远方控制中心的通信本功能在常规远动四遥的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。根据现场的要求,系统应具有通信通道的备用及切换
15、功能,保证通信的可靠性,同时应具备同多个调度中心不同方式的通信接口,且各通信口及MODEM应相互独立。保护和故障录波信息可采用独立的通信与调度中心连接,通信规约应适应调度中心的要求,符合国标及IEC标准。变电站综合自动化系统应具有同调度中心对时,统一时钟的功能,还应具有当地运行维护功能。 2.2变电站综合自动化硬件结构变电站综合自动化系统的发展过程与集成电路技术、微计算机技术、通信技术和网络技术密切相关。随着这些高科技的不断发展,综合自动化系统的体系结构也不断发生变化,其性能和功能以及可靠性等也不断提高。从国内外变电站综合自动化系统的发展过程来看,其结构形式有集中式、分层分布式、和全分散式等三
16、种类型。 1.集中式的结构形式集中式结构的综合自动化系统,指采用不同档次的计算机,扩展其外围接口电路,集中采集变电站的模拟量、开关俩个和数字量等信息,集中进行计算与处理,分别完成微机监控、微机保护和一些自动控制等功能,集中式结构也并非指由一天计算机完成保护、监控等全部功能。多数集中式结构的微机保护、微机监控和与调度等通信的功能也是由不同的卫星计算机完成的,只是每台微计算机承担的任务多些。例如监控机要负担数据采集、数据处理、开关操作、人机联系等多项任务:担负微机保护的计算机,可能一台微机要负责几回低压线路的保护等。随着微处理器的发展、微型计算机的性能价格比迅速优于小型机后,才开始发展以微处理器为
17、核心的变电站自动化系统。调度中心心遥信控制器各种保护装置监 控 主 机输入接口A/D模块输出接口模入接口开入接口输出接口出口继电器继电保护信息输入断路器和隔离开关状态输入模拟量输入保护出口断路器分开状态线路TVTA主变压器TVTA图1 集中式结构的综合自动化系统框图这种集中式的结构式更具变电站的规模,配置相应容量的集中式保护装置和监控主机及数据采集系统,它们安装在变电站中央控制室内。主便延期和各进出线及站内所有电器设备的运行状态,通过TA、TV经电缆传送到忠言控制室的保护装置和监控主机。继电保护动作信息往往是取保护装置的信号继电器的辅助触点,通过电缆送给监控主机。这种系统的主要功能即特点是:(
18、1)能实时采集变电站中各种模拟量、开关量,完成对变电站的数据采集和实时监控、制表、打印、事件顺序记录等功能。(2)完成对变电站主要设备和进出线的保护任务。(3)集中式结构紧凑、体积小、可大大减少占地面积。(4)造价低,尤其是对35kV或规模较少的变电站更为有利。集中式结构最大的缺点是:(1)每台计算机的功能较集中,如果一台计算机出故障,影响面打,因此必须采用双机并联运行的结构才能提高可靠性。(2)集中式结构,软件复杂,修改工作量大,系统调试麻烦。(3)组态不灵活,对不同主线或规模不同的变电站,软硬件都必须另行设计,工作量大,因此影响了批量生产,不利于推广。(4)集中式保护与长期以来采用一对一的
19、常规保护相比,不直观,不符合运行和维护人员的习惯,调试和维护不方便,程序设计麻烦,只适合于保护算法比较简单的情况。2.分层分布式的机构形式在分层分布式结构的变电站综合自动化系统中,将整个变电站的一次、二次设备分为3层,即变电站层、间隔层、和设别层。在所分的3层中,变电站层称为2层,间隔层为1层,设备层位0层。每一层由不同的设备或不同的子系统组成,完成不同的功能。图2所示为变电站一、二次设备分层结构示意图。设备层主要指变电站内的变压器和断路器、隔离开关及其辅助触点,也包括电流互感器、电压互感器等一次设备。间隔层一般按断路器间隔来划分,具有测量、控制部件或继电保护部件。测量、控制部分完成该单元的测
20、量、监视、操作控制、联锁及事件顺序记录等功能;保护部分完成该单元线路或变压器或电容器的保护、故障记录等功能。因此,间隔层本身是由各种不同的单元装置组成的,这系统独立的单元装置直接通过局域网络或串行总线与变电站层联系;也可能设有数采管理机或保护管理机,分别管理各测量、监视单元和各保护单元,然后集中由数采管理机和保护管理机与变电站层通信。间隔层本身实际上就是两级系统的结构。变电站层包括站级监控主机、远动通信机等。变电站层设现场总线或局域网,供各主机之间和监控主机与间隔层之间交换信息。变电站综合自动化系统主要位于1层和2层。变电站层的有关自动化设备一般安装于控制室,而单元层的设备宜安装于靠近现场,以
21、减少控制电缆长度。至现场通信技术在变电站的成熟使用前,单元层的设备仍宜安装在变电站控制室,从而形成了分层分布是系统集中组屏的机构。分层分布式系统集中组屏结构的变电站综合自动化系统有特点如下:(1)分层分布式的配置为了提高综合自动化系统整体的可靠性,系统采用按功能划分的分布式多CPU系统。系统的功能单元包括:各种高低压线路保护单元;电容器保护单元;主变压器保护单元;备用电源自投控制单元;低频减负荷控制单元;电压无功控制单元;数据采集与处理单元;电能计量单元等等。每个功能单元基本上由一个CPU组成,多数CPU采用单片机。主变压器保护等少数功能单元由多个CPU完成。这种按功能设计的分散模块化结构具有
22、软件相对简单、调试维护方便、组态灵活、系统整体可靠性高等特点。变电层监控主机远动主机变电层保护单元1保护单元n测量控制故障滤波间隔层间隔 。 层 设备层 设 TV/TA 高压设备 TV/TA 高压设备 TV/TA 断路器 TV/TA 断路器 备图2 变电站一、二次设备的分层结构(2)继电保护相对独立继电保护装置是电力系统中可靠性要求非常高的设备。根据国际大电网会议要求,在综合自动化系统中,继电保护单元宜相对独立,其功能不依赖于通信网络或其他设备。在分层分布式系统集中组屏结构的变电站综合自动化系统中,各保护单元由独立的电源,保护的输入仍由电流互感器和电压互感器通过电缆连接,输出跳闸命令也通过常规
23、的控制电缆送至断路器的跳闸线圈,保护的启动、测量和逻辑功能独立实现,不依赖通信网络交换信息。保护装置通过通信网络与保护管理机传输的只是保护工作信息或记录数据。为了无人值班的需要,也可通过通信接口实现远方读取和修改保护整定值。(3)具有与控制中心通信功能合自动化系统本身已具有对模拟量、开关量、电能脉冲量进行数据采集和数据处理的功能,也具有收集继电保护动作信息、事件顺利记录等功能,因此,不需要独立的RTU装置为调度中心采集信息,而将综合自动化系统采集的信息直接传送给调度中心,同时也可接受调度中心下达的控制、操作命令和在线修改保护定值命令,并加以执行。(4)可靠性高由于采用模块化结构,各功能模块都由
24、独立的电源供电,输入/输出回路都相互独立,任何一个模块故障,只影响局部功能的实现,不影响全局,系统的可靠性得到提高。(5)维护管理方便分层分布式系统采用集中组屏机构,全部安装在控制室内,工作环境较好,电磁干扰相对开关柜附近较弱,维护和管理方便。(6)需要电缆较多对于规模较大的变电站,由于设备分布较广,安装时需要的控制电缆相对较多,增加了电缆投资。3.全分散式的结构形式硬件结构为完全分散式的综合自动化系统,是指以变压器、断路器、母线等一次主设备为安装单位,将保护、控制、输入/输出、闭锁等单元就地分散安装在一次主设备的开关屏上,安装在主控制室内的主控单元通过现场总线与这些分散的单元进行通信,主控单
25、元通过网络与监控主机联系。这种完全分散式结构的综合自动化系统在实现模式上可分为两种:一种是保护相对独立,测量和控制一体,例如SIEMENS的LSA678,国内的DISA-2、BJ-F3型等系统;另一种是保护、测量、控制完全合一,实现变电站自动化的高度综合。这种完全分散型结构的综合自动化系统的主要特点是:(1) 系统部件完全依主设备分散安装。(2) 节约控制室面积。(3) 节约二次电缆。(4) 综合性强。3系统结构变电站综合自动化系统应该从变电站的整体情况出发,同意考虑保护、监测、控制、远动、VQC和五防功能,其结构框图如下:变电层站内监控主机远方调度中心监控站变站层数采控制机保护管理机间隔电压
26、无功控制柜低频减负荷装置备用电源自投主变保护单元电容保护单元线路保护单元中断输入极电能计量单元A/D采样单元开关量输入单元开关量输出单元层设备层 TV TA 隔离开关位置 断路器状态 TA TV TA TV TA TV TA TV TA TV图3 分层分布式系统集中组屛的综合自动化系统结构框图在变电站自动化系统的管理上,采取分层管理的模式,即各保护功能单元由保护管理机直接管理。一台保护管理机可以管理多个单元模块,它们间可以采用双绞线用RS-485接口连接,也可以通过现场总线连接。而模拟量和开关量的输入/输出单元,由数采控制机负责管理。正常运行时,保护管理机监视各保护单元的工作情况,如果某一保护
27、动作信息或保护单元本身工作不正常,立即报告监控机,再送往调度中心。调度中心或监控机也可通过保护管理机下达修改保护定值等命令。数采控制机则将各数采单元所采集的数据和开关状态送监控机,并由监控机送往调度中心。数采控制机接受由调度中心或监控机下达的命令。总之,保护管理机和数采控制机可明显地减轻控制机的负担,协助控制机承担对单元层的管理。 3.1系统各部分功能变电站综合自动化系统是应用较为成熟的、先进的分布式系统结构,按间隔配置测控单元。将保护功能和测控功能按对象进行设计,集保护/测控功能于一体,保护、测控既相互独立,又相互融合,保护、测控借助于计算机网络与变电站层计算机监控系统交换数据,减少大量二次
28、接线,增加功能,节省了投资,提高了系统可靠性。即变电站综合自动化监控系统采用分层分布式结构,系统分为三层:间隔层、单元层、监控管理层,其中单元层和管理层均属于站控层。系统各层之间是相互独立,主站层故障时,通过前端通信层控制间隔层,监控管理层和前端通信主站层全部故障时不会影响间隔层继电保护系统的政策运行。 3.1.1间隔层单元功能 在变电站综合自动化系统中,主要根据一次设备间隔来划分间隔层的装置。在低压系统中,间隔层单元采用的是集测控保护于一体的微机型测控保护装置;而在高压系统中,保护和测控功能是独立设置,即分别采用测控监视单元与保护单元对系统进行监控与保护。1) 模拟量采集与输出在变电站综合自
29、动化系统中,间隔层单元采集的模拟量主要为交流电压、交流电流、有功功率以及无功功率等,一般通过间隔或元件的电流互感器、电压互感器的二次回路采样,以实现对间隔或元件的交流模拟量的测量。个别直流模拟量或温度量,一般通过传感器或变送器变为标准信号或传送给间隔层单元,或选择独立的直流系统监控装置。2)状态量采集变电站中的状态量信息主要包括传统概念的遥信信息和自动化系统设备运行状态信息等。在变电站综合自动化系统中,不仅要采集表征电网当前拓扑的开关位置等遥信信息,还要将反映测量、保护、监控等系统工作状态的信息进行采集、监视。间隔层中断路器、隔离开团和接地开关等一次设备的位置状态信号,在高压系统中一般采用双位
30、置信号方式输入,在低压系统中,除了断路器的位置信号外,隔离开关和接地开关位置信号可以用单位置触点来采集。所谓双位置信号方式,是指利用间隔层装置中的两个状态输入点来采集一次设备的辅助接点的状态。双位置信号方式较为单位置信号方式可以大大提高状态信号的正确性,防止错误判断的发生。即用2位比特而不是1位比特来表征一个开关的开合状态,这时00,01,10,11的4种组合中只有2种正确的位置状态,而其余2种是不确定状态,不用0,1两种状态表示开合增加了码元的抗干扰性,从而提高了状态信号传输处理过程中的可靠性。此外,在间隔层中海有断路器手车位置、电机储能、高压开关的异常告警信号、变压器瓦斯告警信号、保护状态
31、和自动装置的动作信号、交直流屏的告警信号等一般都是单位置信号。3)保护控制功能在变电站综合自动化系统中,间隔层的设备要独立实现对被控对象的保护功能,在系统发生故障时能迅速起动并发出正确的控制命令。如切断断路器等。同时,间隔层在控制方面,还要实现对断路器、隔离开关、接地开关、变压器分接头调节、消弧线圈接头调节及保护复归、保护压板投退等的控制。其中对于断路器、变压器接头调节等是用双命令控制,而对于保护复归、保护投退、接地试跳等是通过单命令控制实现。双命令控制对象,是指被控对象一个完整控制过程(合闸、分闸过程)需要两个命令才能实现。而单命令控制则是指被控对象的控制过程只要一个命令就能完成。4)通信功
32、能在变电站综合自动化系统中,间隔层单元要为实现与主控单元的通信设立与主控单元通信的接口,为了调试工作的方便进行设立用于参数上装、下装和信息读取的调试接口,为了系统时钟一致而设立对时接口,外此还有与其他间隔层单元通信的通信接口等。这些接口一般是设在间隔单元的前面板或后面板上,分为一般有工业以太网接口、RS232/485/422串行接口、现场总线接口等。在本系统中,间隔层与主控单元之间的连接方式是总线型,因此通信采用WorldFIP总线接口。而且为了提高控制系统可靠性,主控单元采用双机冗余结构。5)防误联锁功能为了提高变电站运行的安全可靠性,要求间隔层单元具有防误联锁功能。这种防误联锁功能主要表现
33、在两个方面:一是本间隔内各元件之间的防误联锁功能,二是间隔之间的防误联锁功能。对于间隔层装置来讲,主要是通过其中的可编程逻辑控制功能来实现防误联锁功能。根据间隔中一次元件的防误联锁条件,间隔层单元一方面通过获取本间隔的断路器、隔离开关、接地开关等信号,实现本间隔自身隔离开关、接地开关、断路器各元件之间的防误联锁要求,另一方面通过网络得到所需的其他间隔的防误联锁信息,利用本间隔中间隔单元的可编程逻辑控制功能来实现间隔之间防误联锁的要求。6)人机界面功能为了方便调试和实现参数显示、查询、修改在间隔层单元的前面板上还应用有LCD显示屏和按键。用于实现对间隔单的运行参数,如电流、电压、功率等进行显示,
34、对通信参数如装置地址、通信规约、波特率等进行设置,对间隔内元件参数和继电保护整定值进行显示和修改,对遥信状态进行显示和查询,对异常现象进行显示报警等功能。(1)人机联系的桥梁,包括CRT显示器、鼠标和键盘。变电站采用微机监控系统后,无论是有人值班还是无人值班,最大的特点之一是操作人员或调度人员只要面对CRT显示器的屏幕通过鼠标或键盘,就可以对全站的运行情况和运行参数一目了然,可对全站的断路器和隔离开关等进行分、合操作,彻底改变了传统的依靠指针式仪表和依靠模拟屏或操作屏等手段的监视、操作方式。(2)CRT屏幕显示的内容。作为变电站人机联系的主要桥梁和手段的CRT显示器,不仅可以取代常规的仪器、仪
35、表,而且可以实现许多常规仪表无法完成的功能。它可以显示的内容,归纳起来有以下几个方面:显示采集和计算的实时运行参数。监控系统所采集和通过采集信息计算出来的U、I、P、Q、cos、有功电能、无功电能及变压器温度T、系统频率f等,都可在CRT的屏幕上实时显示出来,同时在潮流等运行参数的显示画面上应显示出日期和时间(年、月、日、时、分、秒)。屏幕刷新周期可在210s间调整。显示实时主接线图。主接线图上断路器和隔离开关的位置要与实际状态相对应。进行操作时,需操作的对象应有明显的标记(如闪烁灯),并有操作提示或说明。顺序记录显示。显示所有发生事件的内容及发生事件的时间。值班历史记录。保护定值和自控装置的
36、设定值显示。故障记录,设备运行状况显示等。(3)输入数据。变电站投入运行后,随着运行方式的变化,保护定值、越限值等需要修改,甚至由于负荷的增长,需要更换原有的设备,例如更换TA变化。因此在人机联系中,必须有输入数据、调整运行参数的功能。需要输入的数据至少有以下几种内容:TA和TV变化;保护定值和越限报警定值;自控装置的设定值;运行人员密码。 3.1.2变电站层单元功能变电站层的有关自动化设备一般安装于控制室,而间隔层的设备最好安装于靠近现场设备,以减少控制电缆长度。变电层主要用于完成变电站内的间隔层的各种测控单元或测控保护单元以及各种职能电子装置与站控层的后台系统之间的信息交换,起着通信控制器
37、的作用。1)实现和管理与间隔层的各种测控、保护和智能电子装置之间的通信。2)实现和管理与变电站自动化系统中的后台系统和远方调度控制中心之间的通信。3)通过GPS实现对时功能,统一系统时间。4)实现对系统中各装置和设备的监测。对有人值班的变电站,监控系统可以配置打印机,完成以下打印记录功能:定时打印报表和运行日志;开关操作记录打印;事件顺序记录打印;越限打印;召唤打印;抄屏打印;事故追忆打印。对无人值班变电站,可不设当地当地打印功能,各变电站的运行报表集中在控制中心打印输出。变电站层通过控制设备实现运行监视空能,所谓运行监视,主要是指对变电站的运行工况和设备状态进行自动监视,即对变电站各种状态量
38、变位情况的监视和各种模拟量的数值监视。通过状态量变位监视,可监视变电站各种断路器、隔离开关、接地开关、变压器分接头的位置和动作情况、继电保护和自动装置的动作情况以及它们的动作顺序等。模拟量的监视分为正常的测量和超过限定值的报警、事故模拟量变化的追忆等。当变电站有非正常状态发生和设备异常时 监控系统能及时在当地或远方发出事故音响或语音报警,并在 CRT 显示器上自动推出报警画面,为运行人员提供分析处理事故的信息,同时可将事故信息进行打印记录和存储。越限报警的各个参数,有一个允许运行时间限额,为此除越限报警外还应向上级调度(控制)人员提供当前极限远行时间,即允许运行时间减去越限运行的累计时间。异常
39、状态报警的是:非正常操作时,断路器变位信号、保护故障动作信号、监控和保护设备异常状态信号以及数据采集的状态量中其他报警和异常信号。报警方式主要有:自动推出画面、报警、音响提示(语音或可变频率音响)、闪光报警、信息操作提示,如控制操作超时等。 3.2 变电站电压无功控制的基本原理变电站电压无功控制是保证电压质量和无功平衡、提高供电网可靠性和经济性的重要措施之一。随着电网规模的不断扩大和超高压远距离输电系统的发展,一方面系统消耗的无功功率日益增多。另一方面无功补偿容量相对不足,导致一些配电网低谷时电压过高,而在高峰时期电压水平过低的状况,严重威胁着电网安全运行和用户的正常生产生活。从发电机和高压输
40、电线供给的无功功率往往满足不了负荷的需要,因为从建设电网考虑,主要是以电网投资和运行费用最小为目标对无功电源的位置和容量进行优化,实现无功电源的合理规划与配置,即减少发、供电设备的设计容量,减少投资,以就地无功补偿减少无功功率在电网中的流动。在电网建成后,以无功功率交换最少为目标对电网运行方式进行优化控制,所以在电网中要设置一些无功补偿装置来补充无功功率。以保证用户对无功功率的需要。变电站电压无功控制的基本原理就是通过对变电站的电压、无功等运行数据的测最、分析,根据电网实际运行状态,动态地控制变压器分接头位置和电容/电抗器的投切,实现电压和无功的闭环控制,使得电压维持在合格范围内,提高电压合格
41、率,无功动态补偿,降低无功损耗,最终实现提高经济效益的最终目标。计算机监控系统进行电压无功控制的主要步骤如下:第一步:采集电力系统实时运行参数,包括有功、无功、电流、电压,以及各种开关、设备的运行状态,如果系统运行未发生异常情况。则进行下列步骤。第二步:进行电压调节分析。对于电压调节,其主要的判断依据是人为整定的正常电压的范围(限值),超出这个范围即认为电压越限不合格:电压越上限,可能原因有以下两种:1)容性无功多,低压侧无功补偿过多,系统输送无功过少,变压器电压损耗过小;2)分接头低,系统与负荷之间的电器距离太近。电压越下限,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少,系统输送无
42、功过多,变压器电压损耗过大;2)分接头高,系统与负荷之间的电气距离太远。第三步:进行无功补偿判断。其主要的判断依据同样是人为整定的无功范围(限值),超出这个整定值范围,意味着系统无功过多或过少:无功越上限,说明系统送的无功过多,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少;2)分接头高,系统向低压侧无功输送无功过多。无功越下限,说明系统送的无功过少。可能原因有以下两种:1)容性无功多,低压侧无功补偿过多;2)分接头低,系统向低压侧无功输送无功过少。第四步:进行策略选择。在前两步分析判断基础,按照事先确定的策略模型,选择一个最优方案进行实施。并重新进入第一步骤。计算机监控系统的自动控制
43、,既可以降低人员的劳动强度,又可以更实时、更科学地控制电压及达到无功平衡。 3.3 备用电源自投入装置备用电源自投入装置是电力系统故障或其他原因使工作电源被断开后,能迅速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。备用电源自动投入是保证电力系统连续可靠供电的重要措施,是变电站综合自动化系统的基本功能之一。备用电源自动投入装置的基本特点:(1) 工作电源确实断开后,备用电源才投入。(2) 备用电源自动投入切除工作电源断路器必须经过延时。(3) 手动跳开工作电源时,备用自动投入装置不需要动作。(4) 有闭锁备用自动投入装置的功能
44、。(5)备用电源不满足有压条件,备用电源自动投入装置不动作。(6)工作母线失压时还需要检查工作电源无流,启动备自动投入,以防止TV二次侧三相断线造成误投。(7)备用电源自动投入装置只允许动作一次。 3.4 继电保护功能变电站综合自动化系统中的微机继电保护主要包括输电线路保护、电力变压器保护、母线保护、电容器保护、小电流接地系统自动选线、自动重合闸。 由于继电保护的特殊重要性,综合自动化系统绝不能降低继电保护的可靠性。因此要求:(1)系统的继电保护按被保护的电力设备单元(间隔)分别独立设置,直接由相关的电流互感器和电压互感器输入电气量,然后由触点输出,直接操作相应断路器的跳闸线圈。(2)保护装置
45、设有通信接口,供接入站内通信网,在保护动作后向变电站层的微机设备提供报告等,但继电保护功能完全不依赖通信网。(3)为避免不必要的硬件重复,以提高整个系统的可靠性和降低造价,特别是对35kV及以下设备,可以配给保护装置其他一些功能,但应以不因此降低保护装置可靠性为前提。(4)除保护装置外,其他一些重要控制设备,例如备用电源自动投入装置、控制电容器投切和变压器分接头有载切换的无功电压控制装置等,也不依赖通信网, 而设备专用的装置放在相应间隔屏上。继电保护是变电站综合自动系统的关键环节 其最重要的功能就是要有独立的、完整的继电保护功能,在此基础上还必须具备下列附加功能:(1) 继电保护的通信功能及信息量。(2) 具有与系统统一时钟对时的功能。(3) 存储各种保护整定值功能。(4) 当地显示与远处观察和授权修改保护整定值。(5) 设置保护管理机或通信控制机,负责对各保护单元的管理。(6) 故障自诊断、自闭锁和自恢复功能。(7) 自动重合闸功能。参考文献1 王葵,孙莹.电力系统自动化M.北京:中国电力出版社,2012.2 黄益庄.变电站综合自动化技术M.北京: 中国电力出版社.3 电子技术论坛 于飞,胡平变电站综合自动化系统设计