30万吨城市污水处理厂初步设计.doc

上传人:laozhun 文档编号:2807238 上传时间:2023-02-25 格式:DOC 页数:72 大小:3.85MB
返回 下载 相关 举报
30万吨城市污水处理厂初步设计.doc_第1页
第1页 / 共72页
30万吨城市污水处理厂初步设计.doc_第2页
第2页 / 共72页
30万吨城市污水处理厂初步设计.doc_第3页
第3页 / 共72页
30万吨城市污水处理厂初步设计.doc_第4页
第4页 / 共72页
30万吨城市污水处理厂初步设计.doc_第5页
第5页 / 共72页
点击查看更多>>
资源描述

《30万吨城市污水处理厂初步设计.doc》由会员分享,可在线阅读,更多相关《30万吨城市污水处理厂初步设计.doc(72页珍藏版)》请在三一办公上搜索。

1、 目目 录录 1 设计任务及概况设计任务及概况.4 1.1 设计任务及依据.4 1.1.1 设计任务.4 1.1.2 设计依据及原则.4 1.1.3设计范围.5 1.2 设计水量及水质.5 1.2.1设计水量.5 1.2.2设计水质.5 1.3.3设计人口.5 2 工艺设计方案的确工艺设计方案的确定定.6 2.1 方案确定的原则.6 2.2 污水处理工艺流程的确定.6 2.2.1厂址及地形资料.6 2.2.2气象及水文资料.7 2.2.3可行性方案的确定.7 2.2.4工艺流程方案的确定.8 2.2.5污泥处理工艺流程.10 2.3 主要构筑物的选择.10 2.3.1格栅.10 2.3.2泵房

2、.11 2.3.3沉砂池.11 2.3.4初沉池、二沉池.12 2.3.5曝气池.12 2.3.6接触池.13 2.3.7计量槽.14 2.3.8浓缩池.14 2.3.9消化池.14 2.3.10污泥脱水.15 3 污水处理系统工艺设计污水处理系统工艺设计.15 3.1 格栅的计算.15 3.1.1粗格栅.15 3.1.2格栅的计算.16 3.1.3选型.19 3.2 泵房.19 3.2.1泵房的选择.19 3.2.2泵的选择及集水池的计算.19 3.2.3扬程估算.20 3.3 细格栅.20 3.3.1细格栅的计算:.20 3.3.2格栅的计算.21 3.3.3选型.23 3.4 沉砂池的计

3、算.24 3.4.1池体计算.24 3.4.2沉砂室尺寸计算.25 3.4.3排砂.27 3.4.4出水水质.28 3.5 初沉池.28 3.5.1池体尺寸计算.28 3.5.2中心管计算.31 3.5.3出水堰的计算.32 3.5.4集配水井计算.33 3.5.5出水水质.33 3.5.6选型.34 3.6 曝气池.34 3.6.1池体计算.34 3.6.2曝气系统设计与计算.37 3.6.3供气量.38 3.6.4空气管道系统计算.41 3.6.5空压机的选择.44 3.6.6污泥回流系统.44 3.7 二沉池.45 3.7.1池体尺寸计算.45 3.7.2中心管计算.48 3.7.3出水

4、堰的计算.49 3.7.4集配水井计算.49 3.7.5出水水质.51 3.7.6选型.51 3.8 接触池.51 3.8.1接触池尺寸计算.51 3.8.2加氯间.52 3.9 计量槽.53 4 污泥的处理与处置污泥的处理与处置.53 4.1 污泥浓缩池.53 4.2 污泥消化池.57 4.2.1 一级消化池池体部分计算.57 4.2.2 一级消化池池体各部分表面积计算.59 4.2.3二级消化池.60 4.3 贮气柜.60 4.4 污泥控制室.61 4.4.1污泥投配泵的选择.61 4.4.2污泥循环泵.62 4.4.3污泥控制室布局.63 4.5 脱水机房.63 4.5.1采用带式压滤机

5、除水.63 4.5.2选型.64 4.6 事故干化场.64 4.7 压缩机房.65 5 污水处理厂总体布置污水处理厂总体布置.65 5.1 平面布置.65 5.1.1平面布置的一般原则.65 5.1.2 平面布置.65 5.2 污水处理厂高程布置.66 5.2.1高程布置原则.66 5.2.2污水污泥处理系统高程布置.67 总总 结结.68 考文献考文献.70 附附 录录.71 1 1 设计任务及概况设计任务及概况 1 1.1.1 设计任务及依据设计任务及依据 1 1.1.1.1.1 设计任务设计任务 30 万吨城市污水处理厂初步设计 1 1.1.2.1.2 设计依据及原则设计依据及原则 1.

6、1.2.1 设计依据 给水排水工程快速设计手册1-5,给排水设计规范,污水处理厂工艺设计手册,三废设计手册废水卷。1.1.2.2 设计原则(1)执行国家关于环境保护的政策,符合国家地方的有关法规、规范和标准;(2)采用先进可靠的处理工艺,确保经过处理后的污水能达到排放标准;(3)采用成熟、高效、优质的设备,并设计较好的自控水平,以方便运行管理;(4)全面规划、合理布局、整体协调,使污水处理工程与周围环境协调一致;(5)妥善处理污水净化过程中产生的污泥固体物,以免造成二次污染;(6)综合考虑环境、经济和社会效益,在保证出水达标的前提下,尽量减少工程投资和运行费用。1 1.1.3.1.3 设计范围

7、设计范围 设计二级污水处理厂,进行工艺初步设计。1 1.2.2 设计水量及水质设计水量及水质 1 1.2.1.2.1 设计水量设计水量 污水的平均处理量为平Q=30dm/1034=12500hm/3=3.47sm/3;污水的最大处理量为dmQ/103.3634max=15125hm/3=4.2sm/3;污水的最小处理量为smhmdmQ/87.2/10331/1048.23334min。日变化系数取K日为 1.1,时变化系数取 K时为 1.1,总变化系数取K总为 1.21。1 1.2.2.2.2 设设计水质计水质 设计水质如表 1.1 所示。表 1.1 设计水质情况 项 目 5BOD SS 入水

8、(mg L)200 200 出水(mg L)25 30 去除率(%)87.5 85 1 1.3.3.3 3 设计人口设计人口 (1)按 SS 浓度折算:ssaCssQNss 式中:Css废水中 SS 浓度为 200mg/L Q 平均日污水量为 30 万 m3/d ass每人每日 SS 量,一般在 35-55/人 g.d,则:万人1205030200Nss(2)按5BOD浓度折算 555BODBODBODaQCN 式中:5BODC废水中5BOD浓度为 200mg/L Q 平均日污水量为 30 万 m3/d 5BODa每人每日 BOD 量,一般在 20-35/人 gd,取 30/人 g.d,则:2

9、 0 03 0N s s2 0 030万人 2 2 工艺设计方案的确定工艺设计方案的确定 2.12.1 方案确定的原则方案确定的原则 (1)采用先进、稳妥的处理工艺,经济合理,安全可靠。(2)合理布局,投资低,占地少。(3)降低能耗和处理成本。(4)综合利用,无二次污染。(5)综合国情,提高自动化管理水平。2 2.2.2 污水处理工艺流程的确定污水处理工艺流程的确定 2 2.2.1.2.1 厂址及地形资料厂址及地形资料 该污水处理厂厂址位于某市西北部。厂址所在地区地势比较平坦。污水处理厂所在地区地面平均标高为 40.50 米。地震基本烈度为7 度。2 2.2.2.2.2 气象及水文资料气象及水

10、文资料 某市位于东经123,北纬42。属温带半湿润季风型大陆性气候,多年平均温度 7.4C,冬季长,气候寒冷,多偏北风,最冷月(一月)平均气温-12.7C;夏季多偏南风,非采暖季节主导风向为东南风,最热月(七月)平均气温 24.6C。降雨集中在 7-8 月,约占全年降雨的 50%,多年平均降雨量 75 毫米。地面冻结深度 1.2-1.4 米。2 2.2.3.2.3 可行性方案的可行性方案的确定确定 城市污水的生物处理技术是以污水中含有的污染物作为营养源,利用微生物的代谢作用使污染物降解,它是城市污水处理的主要手段,是水资源可持续发展的重要保证。城市二级污水处理厂常用的方法有:传统活性污泥法、A

11、B 法、氧化沟法、SBR 法等等。下面对传统活性污泥法和SBR法两种方案进行比较(工艺流程见图2.1,2.2),以便确定污水的处理工艺。传统活性污泥法的方案特点:(1)工艺成熟,管理运行经验丰富;(2)曝气时间长,吸附量大,去除效率高 9095%;(3)运行可靠,出水水质稳定;(4)污泥颗粒大,易沉降;(5)不适于水质变化大的水质;(6 对氮、磷的处理程度不高;(7)污泥需进行厌氧消化,可以回收部分能源;SBR 法的方案特点:(1)处理流程简单,构筑物少,可不设沉淀池;(2)处理效果好,不仅能去除有机物,还能有效地进行生物脱氮;(3)占地面积小,造价低;(4)污泥沉降效果好;(5)自动化程度高

12、,基建投资大;(6)适合于中小水量的污水处理工艺 从上面的对比中我们可以得到如下结论:从工艺技术角度考虑,普通曝气法和 SBR 法出水指标均能满足设计要求。但是,SBR 法对自动化控制程度要求较高且处理规模一般小于 10 万立方米/天,这与实际情况不符(污水厂自动化水平不高且本设计规模属大型污水处理厂)。故普通曝气法更适合于本设计对污水进、出水水质的要求(对P、N 去除要求不高,水质变化小),故可行性研究推荐采用普通曝气法为污水处理厂的工艺方案。2 2.2.4.2.4 工艺流程方案的确定工艺流程方案的确定 SBR 法是间歇式活性污泥法或序批式活性污泥法的简称,相对于传统活性污泥法,SBR 法工

13、艺是一种正处于发展、完善阶段的技术,因为从 SBR 法的再次兴起直至应用到今天只不过十几年的历史,许多研究工作刚刚起步,缺乏科学的设计依据和方法以及成熟的运行管理经验。SBR 法现阶段在基础研究方面、实践应用方面、工程设计方面仍存在问题。例如:SBR 的适宜规模、合理的设计和运行参数的选择,建立完整的运行维护和管理方法,运行模式的选择于设计方法脱节等等。污水工艺流程的确定主要依据污水水量、水质及变化规律,以及对出水水质和对污泥的处理要求来确定。本着上述原则,本设计选 传统活性污泥法作为污水处理工艺。污水泵房 粗格栅沉砂池初沉池细格栅曝气池接触池二沉池出水计量槽脱水机房污泥控制室浓缩池沼气柜回流

14、污泥泵房鼓风机房加氯间干泥外运回流事故干化场贮砂池一级消化池二级消化池 图 2.1 传统活性污泥法 污水泵房 粗格栅沉砂池初沉池细格栅曝气池鼓风机房加氯间加氯间计量槽出水接触池二级消化池脱水机房污泥控制室一级消化池浓缩池事故干化场沼气柜干泥外运 图 2.2 SBR 法 2 2.2.5.2.5 污泥处理工艺流程污泥处理工艺流程 目前,污泥的最终处置有污泥填埋,污泥焚烧,污泥堆肥和污泥工业利用四种途径。该厂的污泥主要来源于城市污水,完全可以再利用。只需在厂内进行预处理将重金属去除,该厂的污泥用于农业是完全可能的。目前暂时有困难,也可将污泥用于园林绿化,使污泥中的肥分得以充分利用,污泥也可得以妥善处

15、置。根据上述原则,决定污泥采用中温厌氧二级消化,再经机械脱水后运出厂外处置,这时的污泥已基本实现了无害化,不会对环境造成二次污染。污泥消化产生的沼气用于烧锅炉和发电,热量可满足消化池污泥加热需要,电能供本厂使用。2 2.3.3 主要构筑物的选择主要构筑物的选择 2 2.3.1.3.1 格栅格栅 格栅用以去除废水中较大的悬浮物、漂浮物、纤维物质和固体颗粒物质,以保证后续处理单元和水泵的正常运行,减轻后续处理单元的负荷,防止阻塞排泥管道。本设计中在泵前和泵后各设置一道格栅。泵前为粗格栅,泵后为弧形细格栅。由于污水量大,相应的栅渣量也较大,故采用机械格栅。栅前栅后各设闸板供格栅检修时用,每个格栅的渠

16、道内设液位计,控制格栅的运行。格栅间配有一台螺旋输送机输送栅渣。螺旋格栅压榨输送出的栅渣经螺旋运输机送入渣斗,打包外运。粗格栅共有三座,两座使用,一台备用。栅前水深为 1.4m,过栅流速 0.9m/s,栅条间隙为 50mm,格栅倾角为 60。细格栅有四座,三台使用,一台备用。栅前水深为 1.05m,过栅流速 0.9m/s,栅条间隙为 20mm,格栅倾角为 60。2.3.22.3.2 泵房泵房 考虑到水力条件、工程造价和布局的合理性,采用长方形泵房。为充分利用时间,选择集水池与机械间合建的半地下式泵房,这种泵房布置紧凑,占地少,机构省,操作方便。水泵及吸水管的充水采用自灌式,其优点是启动及时可靠

17、,不需引水的辅助设备,操作简便。泵房地下部分高 6.2m,地上部分 6.3m,共高 12.5m。2.3.32.3.3 沉砂池沉砂池 沉砂池的形式有平流式、竖流式、辐流式沉砂池。其中,平流式矩形沉砂池是常用的形式,具有结构简单,处理效果好的优点。其缺点是沉砂中含有 15%的有机物,使沉砂的后续处理难度加大。竖流式沉砂池是污水自下而上由中心管进入池内,无机物颗粒借重力沉于池底,处理效果一般较差。曝气沉砂池是在池体的一侧通入空气,使污水沿池旋转前进,从而产生与主流垂直的横向环流。其优点:通过调节曝气量,可以控制污水的旋流速度,使除砂效果较稳定;受流量变化的影响较小;同时还对污水起预曝气作用,而且能克

18、服平流式沉砂池的缺点。综上所述,采用曝气沉砂池。池子共有六座;尺寸:12m 16.8m 4.59m;有效水深为 2.5m。2.3.42.3.4 初沉池、二沉池初沉池、二沉池 沉淀池主要去除依附于污水中的可以沉淀的固体悬浮物,按在污水流程中的位置,可以分为初次沉淀池和二次沉淀池。初次沉淀池是对污水中的以无机物为主体的比重大的固体悬浮物进行沉淀分离。二次沉淀池是对污水中的以微生物为主体的、比重小的、因水流作用易发生上浮的固体悬浮物进行分离。沉淀池按水流方向可分为平流式的、竖流式的和辐流式的三种。竖流式沉淀池适用于处理水量不大的小型污水处理厂。而平流式沉淀池具有池子配水不易均匀,排泥操作量大的缺点。

19、辐流式沉淀池不仅适用于大型污水处理厂,而且具有运行简便,管理简单,污泥处理技术稳定的优点。所以,本设计在初沉池和二沉池都选用了辐流式沉淀池。初沉池共有六座,直径为 40m,高为 6.83m,有效水深为 3.6m。为了布水均匀,进水管设穿孔挡板,穿孔率为 10%-20%,出水堰采用直角三角堰,池内设有环形出水槽,双堰出水。每座沉淀池上设有刮泥机,沉淀池采用中心进水,周边出水,周边传动排泥。二沉池九坐,直径为 36m,高为 6.79m,有效水深为 3.5m。也采用中心进水,周边出水,排泥装置采用周边传动的刮吸泥机。其特点是运行效果好,设备简单。污泥回流设备采用1000LXB型螺旋泵。2.3.52.

20、3.5 曝气池曝气池 本设计采用传统活性污泥法(又称普通活性污泥法),该法对 BOD的处理效果可达 90%以上。传统活性污泥法按池形分为推流式曝气池和完混合曝气池。推流式曝气特点是:废水浓度自池首至池尾是逐渐下降的,由于在曝气池内存在这种浓度梯度,废水降解反应的推动力较大,效率较高;推流式曝气池可采用多种运行方式;对废水的处理方式较灵活;由于沿池长均匀供氧,会出现池首供气不足,池尾供气过量的现象,增加动力费用的现象。完全混合式曝气池的特点是:冲击负荷的能力较强;由于全池需氧要求相同,能节省动力;曝气池与沉淀池合建,不需要单独设置污泥回流系统,便于运行管理;连续进水、出水可能造成短路;易引起污泥

21、膨胀;适于处理工业废水,特别是高浓度的有机废水。综上,根据各自特点本设计选择推流式活性污泥法。在运行方式上,以推流式活性污泥法为基础,辅以分段曝气系统运行。曝气系统采用鼓风曝气,选择其中的网状微孔空气扩散器。共有 6 座曝气池,池型采用折流廊道式,分五廊道,池长为 66m,高为 5.7m,宽 6m,有效水深为 5.2m,污泥回流比 R=30%。2 2.3.6.3.6 接触池接触池 城市污水经二级处理后,水质改善,但仍有存在病原菌的可能,因此在排放前需进行消毒处理。液氯是目前国内外应用最广泛的消毒剂,它是氯气经压缩液化后,贮存在氯瓶中,氯气溶解在水中后,水解为 Hcl 和次氯酸,其中次氯酸起主要

22、消毒作用。氯气投加量一般控制在 1-5mg/L,接触时间为 30 分钟。接触池 总长为 312.5m,分 14 个廊道,每廊道长 23m,宽 4m 2 2.3.7.3.7 计量槽计量槽 为提高污水厂的工作效率和运转管理水平,并积累技术资料,以总结运转经验,为今后处理厂的设计提供可靠的依据,设计计量设备,以正确掌握污水量、污泥量、空气量以及动力消耗等。本设计选用巴式计量槽,设在污水处理系统的末端。2 2.3.8.3.8 浓缩池浓缩池 浓缩池的形式有重力浓缩池,气浮浓缩池和离心浓缩池等。重力浓缩池是污水处理工艺中常用的一种污泥浓缩方法,按运行方式分为连续式和间歇式,前者适用于大中型污水厂,后者适用

23、于小型污水厂和工业企业的污水处理厂。浮选浓缩适用于疏水性污泥或者悬浊液很难沉降且易于混合的场合,例如,接触氧化污泥、延时曝起污泥和一些工业的废油脂等。离心浓缩主要适用于场地狭小的场合,其最大不足是能耗高,一般达到同样效果,其电耗为其它法的 10 倍。从适用对象和经济上考虑,故本设计采用重力浓缩池。形式采用连续式的,其特点是浓缩结构简单,操作方便,动力消耗小,运行费用低,贮存污泥能力强。采用水密性钢筋混凝土建造,设有进泥管、排泥管和排上清夜管。浓缩池二座,直径为 24 米,浓缩时间 14h。2 2.3.9.3.9 消化池消化池 消化池的作用是使污泥中的有机物得到分解,防止污泥发臭变质且其产生的沼

24、气能作为能源,可发电用。本设计采用二级中温消化,池形采用圆柱形消化池,优点是减少耗热量,减少搅拌所需能耗,熟污泥含水率低。一级消化池六座,直径为 24m,消化温度为 35,二级消化池三座,且尺寸与一级相同。2.3.102.3.10 污泥脱水污泥脱水 污泥机械脱水与自然干化相比较,其优点是脱水效率较高,效果好,不受气候影响,占地面积小。常用设备有真空过滤脱水机、加压过滤脱水机及带式压滤机等。本设计采用带式压滤机,其特点是:滤带可以回旋,脱水效率高;噪音小;省能源;附属设备少,操作管理维修方便,但需正确选用有机高分子混凝剂。另外,为防止突发事故,设置事故干化场,使污泥自然干化。3 3 污水处理系统

25、工艺设计污水处理系统工艺设计 3 3.1.1 格栅的计算格栅的计算 3 3.1.1.1.1 粗格栅粗格栅 选用三个规格一样的粗格栅,并列摆放,两台工作,一台备用。图 3.1 格栅示意图 3 3.1.2.1.2 格栅的计算格栅的计算 (1)栅条间隙数n maxsinQnbhv 式中:n栅条间隙数,个;maxQ最大设计流量,3ms,maxQ=4.23ms;格栅倾角,取=60;b栅条间隙,m,取b=0.05m;h栅前水深,m,取h=1.4m;v过栅流速,m s,取v=0.9m s;K总生活污水流量总变化系数,根据设计任务书K总=1.21。则:maxsin4.2sin60312 0.05 1.4 0.

26、9Qnbhv(2)栅槽宽度B(1)BS nbn 式中:S栅条宽度,m,取 0.01 m。则:(1)BS nb n=0.01(31-1)+0.0531=0.3+1.55=1.85m(3)通过格栅的水头损失1h 1hh k 2sin2vhg 4 3()sb 式中:1h设计水头损失,m;h计算水头损失,m;g重力加速度,2m s,取g=9.82m s;k系数,格栅受污物堵塞时水头损失增大倍数,一般采用k=3;阻力系数,其值与栅条断面形状有关;形状系数,取=2.42(由于选用断面为锐边矩形的栅条)。则:4 3()sb=4 30.012.42()0.05=0.28 2sin2vhg=20.90.28si

27、n602 9.8=0.01m 1hh k0.01 30.03m (4)栅后槽总高度H 12Hhhh 式中:2h栅前渠道超高,m,取2h=0.3m。则:12Hhhh=1.4+0.3+0.03=1.73m。(5)栅槽总长度L 1121.00.5tanHLll 1112tanBBl 122ll 11Hhh 式中:1l 进水渠道渐宽部分的长度,m;1B进水渠宽,m,取1B=1.7m;1进水渠道渐宽部分的展开角度,取1=20;2l栅槽与进水渠道连接处的渐窄部分长度,m;1H栅前渠道深,m.则:1112tanBBl=1.85 1.70.2062tan20m 122ll 0.2 0 60.1 0 32m 1

28、1Hhh1.40.31.7m 1121.00.5tanHLll=1.70.2060.103 1.00.53.08tan60m(6)每日栅渣量W max1864001000QWWK总 式中:1W栅渣量,33310mm 污水,取1W=0.0133310mm 污水。则:3m a x18640086400 4.2 0.011.5010002 1000 1.21QWWm dK总0.23md,宜采用机械清渣(7)校核 hBkQAQv1m i n总 式中:1v栅前水速,m s;一般取 0.4m/s0.9m/s minQ最小设计流量,3ms;minQQK=2.873ms A进水断面面积,2m;Q设计流量,3m

29、s,取Q=4.23ms。则:1min13.470.62 1.21 1.7 1.4QQvm sAK Bh总 1v在0.4 0.9m sm s之间,符合设计要求。3 3.1.3.1.3 选型选型 选用2000 40GH 型链式旋转格栅除污机,其性能如表 3.1 所示。表 3.1 粗格栅性能表 项 目 型 号 安装角 过栅水速 m s 电机功率 kw 性 能 2000 40GH 型链式旋转格栅 除污机 60 0.9 1.5 3 3.2.2 泵房泵房 3 3.2.1.2.1 泵房的选择泵房的选择 选择集水池与机械间合建的半地下矩形自灌式泵房,这种泵房布置紧凑,占地少,机构省,操作方便。3 3.2.2.

30、2.2 泵的选择及集水池的计算泵的选择及集水池的计算 (1)平均秒流量Q 43330 10103.47 1086400QL s(2)最大秒流量1Q 1QQK总333.47 101.214.20 10 L s(3)考虑 3 台水泵,每台水泵的容量为34.2 1014003L s(4)集水池容积,采用相当于一台泵 6 分钟的容量W 31400 6 605041000Wm 集水池面积25042522WFmH 3 3.2.3.2.3 扬程估算扬程估算 (1)集水池最低工作水位与所需提升最高水位之间的高差h h)/(0HhDhDhhi =45-(35+2.0 0.75-0.03-2)=10.53 其中:

31、H集水池有效水深,m,取2Hm;h出水管提升后的水面高程,m,取45hm;1h进水管管底高程,m,取135hm;D进水管管径mm,由设计任务书2000Dmm;h D进水管充满度,由设计任务书0.75h D;h经过粗格栅的水头损失,m,取 h=0.03。由于资料有限,出水管的水头损失只能估算,设总出水管管中心埋深 0.9 米,局部损失为沿线损失的 30%,则泵房外管线水头损失为0.558m。泵房内的管线水头损失假设为 1.5 米,考虑自由水头为 1 米,则水头总扬程:Hz=1.5+0.558+10.53+1=13.588m。选 用550TUL型 污 水 水 泵 三 台,每 台1350QL s,扬

32、 程10 45Hm。集水池有效水深2m,吸水管淹没深度0.4m,喇叭口口径1.2m,取泵房地下部分高 6.2m,地上部分 6.3m,共12.5m。3 3.3.3 细格栅细格栅 3 3.3.1.3.1 细格栅的计算:细格栅的计算:设四台机械格栅,三台运行,一台备用。3 3.3.2.3.2 格栅的计算格栅的计算 (1)栅条间隙数n maxsinQnbhv 式中:n栅条间隙数,个;maxQ最大设计流量,3ms,maxQ=4.23ms;格栅倾角,取=60;b栅条间隙,m,取b=0.02m;h栅前水深,m,取h=1.05m;(一般栅槽宽度 B 是栅前水深 h 的二倍)v过栅流速,m s,取v=0.9m

33、s;K总生活污水流量总变化系数,由设计任务书K总=1.21。则:m a xs i nQnbhv4.2s i n 6 068.93 0.02 1.05 0.9,取 70 个(2)栅槽宽度B(1)BS nbn 式中:S栅条宽度,m,取 0.01 m。则:(1)BS nbn=0.01(70-1)+0.0170=2.10m(3)通过格栅的水头损失1h 1hh k 2sin2vhg 4 3()sb 式中:1h设计水头损失,m;h计算水头损失,m;g重力加速度,2m s,取g=9.82m s;k系数,格栅受污物堵塞时水头损失增大倍数,一般采用k=3;阻力系数,其值与栅条断面形状有关;形状系数,取=2.42

34、(选用迎背水面均为半圆形的矩形栅条);则:4 3()sb=4 30.012.42()0.02=0.96 2sin2vhg=20.90.96sin602 9.8=0.034m 10.0 3 430.1 0 3hh km(4)栅后槽总高度H 12Hhhh 式中:2h栅前渠道超高,m,取2h=0.3m。则:12Hhhh=1.05+0.3+0.103=1.453m。(5)栅槽总长度L 1121.00.5tanHLll 1112tanBBl 122ll 11Hhh 式中:1l 进水渠道渐宽部分的长度,m;1B进水渠宽,m,取1B=1.9m;1进水渠道渐宽部分的展开角度,取1=20;2l栅槽与进水渠道连接

35、处的渐窄部分长度,m;1H栅前渠道深,m。则:1112tanBBl=2.1 1.90.272tan20m 122ll 0.270.142m 11Hhh1.90.32.2m 1121.00.5tanHLll=1.350.270.14 1.00.52.69tan60m(6)每日栅渣量W max1864001000QWWK总 式中:1W栅渣量,33310mm 污水,取1W=0.0733310mm 污水。则:3max18640086400 4.2 0.075.2510003 1000 1.21QWWm dK总0.23md 宜采用机 械清渣(7)校核 1min1QQvAK Bh总 式中:1v栅前水速,m

36、 s;minQ最小设计流量,3ms;A进水断面面积,2m;Q设计流量,3ms,取Q=2.893ms。则:1min13.470.483 1.21 1.9 1.05QQvm sAK Bh总 1v在0.4 0.9m sm s之间,符合设计要求。3 3.3.3.3.3 选型选型 选用17 10GSRB型弧形格栅除污机,其性能如表 3-2 所示。表 3.2 细格栅性能表 项目 圆弧半径 mm 栅条组宽 mm 重 量 kg 安装角 过栅水速 m s 电机功率 kw 性能 500 1200 600 60 0.9 0.30.7 3 3.4.4 沉砂池的计算沉砂池的计算 3 3.4.1.4.1 池体计算池体计算

37、 (1)池子总有效容积V max60VQt 式中:maxQ最大设计流量,3ms,maxQ=4.23ms;t最大设计流量时的流行时间,min,一般为 1min3min,此处取t=2min。则:3max604.2 2 60504VQtm (2)水流断面面积A maxQAv 式中:v最大设计流量时的水平流速,m s,取0.1vm s。一般为 0.06m/s0.1m/s 则:2max4.2420.1QAmv(3)池子总宽度B 2ABh 式中:2h设计有效水深,m,取2h=2.5m,一般值为 2m3m。则:24216.82.5ABmh(4)池子单格宽度b Bbn 式中:n池子分格数,个,取n=6。则:1

38、6.82.86Bbmn(5)校核宽深比:b/2h=2.8/2.5=1.12,在 12 范围内,符合要求。(6)池长L VLA 则:5041242VLmA(7)校核长宽比:L/B=12/2.8=4.374,符合要求。(8)每小时所需空气量q max3600qdQ 式中:d每3m污水所需空气量,33mm,取d=0.233mm。则:3m a x3 6 0 00.24.23 6 0 03 0 2 4qd Qm 3 3.4.2.4.2 沉砂室尺寸计算沉砂室尺寸计算 (1)砂斗所需容积V max68640010QXTVK总 式中:X城市污水沉砂量,36310mm 污水,取X=3036310mm 污水;T

39、两次清除沉砂相隔的时间,d,取T=2d;K总生活污水流量总变化系数,由设计任务K总=1.21。则:3max66864004.2 30 2 8640018101.21 10QXTVmK 总(2)每个砂斗所需容积V VVn 式中:n砂斗个数,设沉砂池每个格含两个沉砂斗,有 6 个分格,沉砂斗个数为 12 个 则:3151.512VVmn(3)砂斗实际容积1V 224112126hVaaa a(2+2+2)4122tanhaa 式中:1a砂斗上口宽,m;2a砂斗下口宽,m,取2a=1m;4h砂斗高度,m,取4h=0.8m;斗壁与水平面倾角,取=55。则:41222 0.812.1tantan55ha

40、am 224112126hVaaa a220.8(2+2+2)=(2 2.1+2 1+2 2.1 1)6 3m=2.03V=1.53m (4)沉砂池总高度H(采用重力排砂)1234Hhhhh 31()hLa i 式中:1h超高,m,取1h=0.3m;3h砂斗以上梯形部分高度,m;i池底坡向砂斗的坡度,取i=0.1,一般值为 0.10.5 则:31()(122)0.10.988hLa im 12340.32.50.9880.84.588Hhhhhm(5)最小流速校和 minmin1min12QQvnWK nbh总 式中:Q设计流量,3ms,取Q=3.473ms;minQ最小设计流量,3ms;2.

41、873ms 1n最小流量时工作的沉砂池格数,个,取1n=2;minW最小流量时沉砂池中的水流断面面积,2m,minW为7.02m。则:minmin1min123.470.211.21 2 2.8 2.5QQvm snWK nbh 总0.15m s,符合设计要求。3 3.4.3.4.3 排砂排砂 采用重力排砂,排砂管直径300Dmm,在沉砂池旁设贮砂池,并在管道首端设贮砂阀门。(1)贮砂池容积V 127.5VnVh b 则:3127.512 2.03 7.5 2.5 2.876.86VnVh bm(2)贮砂池平面面积A VAh 式中:h贮砂池有效水深,取h=2.5m。则:27 6.8 63 0.

42、7 42.5VAmh 3 3.4.4.4.4 出水水质出水水质 查给排水设计手册2,经曝气沉砂池,SS去除率 10%。则:SS=200(1 10%)200 90%180mg L 3 3.5.5 初沉池初沉池 3 3.5.1.5.1 池体尺寸计算池体尺寸计算 (1)沉淀部分水面面积F maxQFnq 式中:maxQ最大设计流量,3m h,maxQ=125003m h;n 池数,个,取n=6;q表面负荷,32mmh,取q=1.832mmh。则:2m a x125001157.46 1.8QFmnq(2)池子直径D 4FD 则:44 1157.438.43.14FDm 取D 40m(3)实际水面面积

43、F 24DF 则:2223.14 40125644DFm 核算表面负荷:32125001.666 1256Qqmm hnF20m3 (13)校核径深比:D/h=40/3.6=11.23 在 612 之间,符合要求 3 3.5.2.5.2 中心管计算中心管计算 (1)进水管直径D:取D=900mm 则 max2244 4.21.106 3.14 0.9Qvm sn D在 0.91.2m s之间,符合设计要求 (2)中心管设计要求 10.9 1.2vm s 20.15 0.20vm s 30.1 0 0.2 0vm s (1.5 2.0)Bb 图 3.2 中心管计算图 14DD 2(1 31 2)

44、hh(3)套管直径D,取1D=2.2m 23.61.822hhm 则:144 2.28.8DDm max222144 4.20.186 3.14 2.2Qvm sn D 2v在 0.150.20m s之间,符合要求。(4)设 8 个进水孔,取2Bb 18()DBb 则:22 0.290.58Bbm (5)h,取30.18vm s 则:max34.20.8788 6 0.56 0.18QhmnBv (6)1v,取900dmm 则:max12244 4.21.106 3.14 0.9Qvm sn d 1v在0.91.2m s之间,符合设计要求。3.3.5.35.3 出水堰的计算出水堰的计算 (1)

45、出水堰采用直角三角堰,过水堰水深取0.04hm,一般 为 0.0210.2 之间(2)堰口流量:SLhq/448.04.125 (3)三角堰个数:3max4.2 1015636 0.448Qnmq个(4)出水堰的出水流速取:0.8vm s 则:断面面积2max4.20.4422 6 0.8QAmnv (5)取槽宽为 0.8m,水深为 0.8m,出水槽距池内壁 0.5m 则:0.8 2 0.8 240 1.6 1.636.8DDm 内 0.8 240 1.638.4DDm外 (6)出水堰总长l()3.14(36.8 38.4)236lDDm外内(7)单个堰堰宽236.130.151563llmn

46、 (8)堰口宽 0.10,堰口边宽 0.155-0.10=0.055m(9)堰高0.1550.07752m(10)堰口负荷:3max4.2 102.22 6 1563 0.1QqL smnl q在 1.52.9L s之间,符合设计要求。3 3.5.4.5.4 集配水井计算集配水井计算 (1)设计三个初沉池用一个集配水井,共两座。3max14.22.122QQm s(2)配水井来水管管径1D取1D=1500mm,其管内流速为1v 则:1122144 2.11.193.14 1.5Qvm sD(3)上升竖管管径2D取21600Dmm,其管内流速为2v 则:1222244 2.11.043.14 1

47、.6Qvm sD(4)竖管喇叭口口径3D,其管内流速为3v 321.31.3 16002080DDmm 取32100Dmm 则:1322344 2.10.613.14 2.1Qvm sD(5)喇叭口扩大部分长度3h,取=45 则:332()tan2(2.1 1.6)tan45 20.3hDDm(6)喇叭口上部水深10.5hm,其管内流速为4v 则:1432.10.643.14 2.1 0.5Qvm sD h(7)配水井尺寸:直径43(1.0 1.6)DD,取431.5DD 则:431.5DD2.1 1.53.6m(8)集水井与配水井合建,集水井宽1.2Bm,集水井直径5D 则:5423.62

48、1.26.0DDBm 3 3.5.5.5 5 出水水质出水水质 查给排水设计手册2,经初沉池5BOD、SS去除率分别取 25%、60%。5BOD=200(1 25%)150mg L SS=180(1 60%)180 40%72mg L 3 3.5.6.5.6 选型选型 选用 ZG 型周边传动刮泥机六台,每座初沉池一台。其性能如表3.3 所示。表 3.3 35ZG型周边传动刮泥机性能表 项 目 池 径 m 电动机功率 kw 滚轮与轨道型式 重 量 kg 性 能 40 2.2 钢滚轮、钢板轨道 16000 3 3.6.6 曝气池曝气池 3 3.6.1.6.1 池体计算池体计算 (1)水中非溶解性5

49、BOD含量非5BOD 57.1aeBODbX C非 式中:b微生物自身氧化率,一般在 0.050.10 之间,取b=0.08;aX微生物在处理水中所占的比例,取aX=0.4;eC水中悬浮固体浓度,mg L,取eC=25mg L。则:57.17.1 0.08 0.4 255.7aeBODbX Cmg L非 (2)出水中溶解性5BOD含量eL 5eLBODBOD总非 式中:BOD总出水中5BOD的总含量,mg L,取BOD总=25mg L 则:52 55.71 9.3eLB O DB O Dm g L总非(3)5BOD的去除率E 100%aeaLLEL 式中:E5BOD的去除效率,%;aL进水5B

50、OD的浓度,mg L,取aL=150mg L。则:150 19.3100%100%87%150aeaLLEL83%符合要求(4)5BOD污泥负荷率sN 2esK L fNE 式中:sN污泥负荷,5kgBODkgMLSS d;2K系数,取2K=0.0185;f系数,一般为 0.70.8,取f=0.75。则:250.0185 19.3 0.750.3284%esK L fNkgBOD kgMLSS dE sN在 0.20.45kgBODkgMLSS d之间,符合设计要求。(5)混合污泥浓度X 610(1)R rXRSVI 式中:SVI污泥体积指数,mg L,取SVI=120mg L;一般为(100

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 建筑/施工/环境 > 项目建议


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号