《污水处理厂再生水源热泵工程初步方案书.doc》由会员分享,可在线阅读,更多相关《污水处理厂再生水源热泵工程初步方案书.doc(51页珍藏版)》请在三一办公上搜索。
1、 某污水处理厂再生水源热泵工程初步方案目 录一、项目概况4二、设计依据5三、设计条件63.1热负荷63.2系统设计参数83.3再生水水源的条件8四、再生水源热泵系统方案设计114.1设计原则114.2系统方案设计的主要技术路线124.3方案概述164.4 主要设备的设计选型174.5系统原理图254.6主要设备选型汇总26五、热泵机房自控系统设计275.1概述275.2设计依据275.3设计原则285.4功能要求及监控对象295.5系统结构315.6控制策略分析325.7节能系统分析32六、系统运行经济性分析336.1系统初投资估算336.2运行费用估算34附件一 *简介及部分工程业绩介绍35
2、附件二 *类似项目业绩介绍431、奥运村再生水热泵冷热源工程432、国家重点科技攻关课题奥运专项443、燕山办事处办公楼污水热泵供暖供冷工程介绍474、世博轴项目485、2007百千万人才资助项目直接式污水源热泵系统应用中关键技术的研究496、张家港购物公园污水源热泵项目527、安阳广厦新苑再生水源热泵项目53一、项目概况兰州市*安宁区污水厂位于兰州市安宁区北滨河路西段、是日处理能力20万吨的先进污水处理厂,服务面积42k,东临大片的住宅小区。污水处理厂终沉池共计8座,单座净尺寸4040m,池边水深4.3m。终沉池采用中心进水、周边出水形式幅流池。污泥回流泵房为矩形钢筋混凝土结构,屋层采用网架
3、结构屋面,平面尺寸18.410.4m,地面以下深度8m,分为污泥回流泵井和剩余污泥泵井两部分,两泵井设连通闸板,剩余污泥泵井可兼顾终沉池放空。每座回流污泥泵房6台潜水排污泵,电动闸板10个以及相应的起吊、配电等附属设施。目前,该水厂是甘肃省规模最大,工艺先进,污泥污水设施齐全,沼气发电、余热充分利用的城市污水处理厂。*污水处理厂目前实际日污水处理量约为16万吨/天,常年水温高于10,处理后的二级污水中含有大量的低位热能,经热泵系统提取后可用于该区域的集中供热。再生水源热泵系统是新型的可再生清洁能源利用技术,可以满足供暖、制冷、供应生活热水的多元需求,使用过程中不会产生任何污染,是实现节能降耗和
4、污染减排的重要措施和手段,符合构建资源节约型、环境友好型和谐社会的要求,对兰州市发展新型可再生能源可以起到良好的示范作用。以下将给出项目的初步技术方案和系统的经济性分析。二、设计依据1. 采暖通风与空气调节设计规范(GB50019-2003);2. 地源热泵系统工程技术规范GB50366-2005;3. 住宅建筑规范(GB50368-2005);4. 建筑给水排水设计规范(GB50015-2003);5. 通风与空调工程施工质量验收规范(GB50243-2002);6. 全国民用建筑工程设计技术措施暖通空调动力(2003版);7. 夏热冬冷地区居住建筑节能设计标准(JGJ1342001);8.
5、 全国民用建筑工程设计技术措施给水排水(2003版);9. 兰州市城市总体规划(第三版)供热部分 (2001年-2010年)10. 兰州市城市总体规划(第四版) (2008年-2020年)征求意见稿11. 甲方提供的资料及相关要求12. 其他有关国家和地方的现行规程、规范和标准。三、设计条件3.1热负荷3.1.1自然气候条件兰州市地处黄河上游,大陆性季风气候明显,属中温带大陆性气候,冬无严寒,夏无酷暑,四季分明。气候特点是降水少,日照多,光能潜力大,气候干燥,昼夜温差大,年日照时数为2600小时,无霜期为180天,年平均降水量在250350毫米,并集中分布在69月,年平均气温9.3。3.1.2
6、室外气象参数下表根据中国建筑热环境分析专用气象数据集给出了兰州市的设计用室外气象参数,作为设计参考。表1 兰州市设计用室外气象参数设计用室外气象参数单位数值采暖室外计算温度-8.8 冬季通风室外计算温度-8.5 冬季空气调节室外计算温度-11.4 冬季空气调节室外计算相对湿度70 冬季室外平均风速m/s0.3 冬季室外最多风向的平均风速m/s2.2 冬季最多风向ENE冬季最多风向的频率5冬季室外大气压力Pa85283 冬季日照百分率40 设计计算用采暖期日数日130设计计算用采暖期初日11月7日设计计算用采暖期终日3月16日极端最低温度-19.7 最冷月干球温度变化图如下所示:3.1.3热负荷
7、指标估算根据国家部委关于“推动新建住宅和公共建筑严格执行节能50%的设计标准,直辖市及有条件的地区要率先实施节能65%的设计标准”要求和甘肃省政府、兰州市政府关于“兰州等有条件的市州要率先实施65%的标准”要求。2007年之前(含2007年)兰州市居住建筑执行50%节能率的节能标准(二步节能标准),从2008年开始兰州市在全省率先强制推行65%节能率的节能标准(三步节能标准)。表2 兰州市2008-2015年规划新建建筑面积热指标表 名称居住建筑热指标W/公共建筑热指标W/综合热指标W/规划新建建筑36.35244.2结合兰州市实际情况,本方案设计用户均为规划新建建筑,故综合建筑面积热指标取值
8、45 W/(包括5%的管网损失)。3.2系统设计参数冬季采暖设计热水供/回水温度70/57。3.3再生水水源的条件城市污水除具有“水”的特性和用途外,还储存有大量的低位能量,具有“能量”特性。冬季城市污水的水温高于大气环境温度,是污水源热泵系统较好的低温热源,夏季城市污水的水温低于大气环境温度,是污水源热泵空调系统较好的散热体。污水源热泵系统以其绿色环保、高效节能越来越受到重视。*污水处理厂污水日处理量16万吨,处理标准为二级排放水。利用排放的二级水结合热泵系统为污水处理厂东侧规划新建小区提供区域供暖热源。再生水源热泵项目成败的关键即为对水源条件的水质、水温、水量等进行认真的调研、分析,制订具
9、有针对性的技术方案,解决好水源水量、水温、水质的关键问题,充分利用水源有利条件。3.3.1再生水水源水量实施再生水源热泵工程,须获得再生水水水源水量逐时变化规律,尤其关注再生水最小小时流量。目前该项监测工作我公司正在进行。根据甲方提供的现有资料初步按照再生水最大小时流量7000m3/h,最小小时流量6400m3/h计算。3.3.2再生水水源水温再生水水源水温是再生水源热泵系统的重要设计参数,再生水源热泵系统水源设计温度应以多年冬季最低温度作为设计温度。该部分资料需污水处理厂提供,目前我公司正在排水口进行排水温度的逐时监测,本方案根据甲方提供的现有资料按照再生水冬季最低温度10,最高温度17进行
10、设计计算。3.3.3再生水水源水质以下给出的是城市污水的水质标准,本项目采用该污水厂排出的二级标准水作为热泵系统的冷热源。表3 污水水质标准 (单位mg/L)序号基本控制项目一级标准二级标准三级标准1COD5万m3/d50801001-5万m3/d50801005万m3/d1020301-5万m3/d1020301万m3/d1520303SS1520304动植物油1355石油类1356LAS0.5127总氮1520-8NH3-N55259总P(以P计)0.50.5310色度(稀释倍数)30303011PH69696912粪大肠菌群数*(个/L)103104104根据我公司实施奥运村再生水热泵冷
11、热源项目的经验,及对项目应用水源的三年的在线仪器及人工检测结果表明,污水处理厂的二级排放水的水质大约85以上的时间内是达标排放的,其它时间内水质均相对较差,低于三级水标准。水中主要有:1)污杂物:树叶、塑料、纸片、菜叶、鱼鳞、毛发、短纤维等;2)悬浮物:1微米数十毫米;3)绿苔、藻类、微生物及衍生物4)无机化合物:钙、镁、钾、钠、氯化物、硫酸盐、磷酸盐;根据我公司和清华大学热能系共同完成的国家科技部重点科技攻关课题再生水热能综合利用系统关键技术的研究结果表明,水质对污水源热泵系统主要会产生以下三种影响:1)腐蚀再生水中氯根和硫酸根含量较少,腐蚀主要是生物、颗粒、析晶和污垢腐蚀。根据实验室加速腐
12、蚀实验及现场挂片实验研究得到了二级水对不同金属的腐蚀速率。实验结果可直接指导热泵系统的过滤器、换热器等关键设备、部件的选材的耐腐蚀设计。2)悬浮物的沉积、附着、结垢、堵塞二级水中的污杂物、悬浮物会对污水热泵系统产生沉积、附着、结垢、堵塞等不利影响;需要设计具有针对性的自清洗过滤系统以解决污杂物对热泵系统造成的堵塞,有效缓解悬浮物沉积、附着、结垢对换热器效率的影响。3)微生物的沉积、生长二级水中的微生物较多,水温及水中的化学成分均有利与微生物的生长,微生物在换热器内沉积、生长会影响换热、降低效率乃至于使系统不能运转。需要设计具有针对性的换热器自清洗系统,以有效解决悬浮物、微生物在热泵系统换热器内
13、沉积、附着、结垢对换热的不利影响。本系统方案按三级排放水标准进行系统设计。水源条件分析小结:1)水量:最大小时流量6700 m3/h,最小小时流量6400 m3/h;2)水温:冬季最低为10,最高17;3)水质:按三级排放水标准进行系统设计。水源具有腐蚀性,系统的关键设备、部件须进行耐腐蚀设计,须设计自清洗过滤系统,须设计换热器自清洗系统。四、再生水源热泵系统方案设计4.1设计原则1)系统方案设计需在不同工况下很好的满足系统供暖需求;系统具备安全性、稳定性、可靠性;2)系统方案设计是全面、科学、合理、高效的,并可实现高效、节能运行;3)系统方案设计遵守投资较少、机房占地面积节省的原则; 4)选
14、择最佳的设备、系统配置方案,提高设备利用率及效率,实现系统低成本运行;5)系统方案设计遵守有利于系统维护、运行、控制、管理的原则;6)主要设备选型先进合理、使用寿命长、噪声低、效率高、维护简单。7)主要设备选型均满足再生水水源的特性要求,保证设备安全高效稳定运行。4.2系统方案设计的主要技术路线再生水源热泵系统可分为两种类型,即直接式和间接式。直接式是再生水经过处理后直接进入热泵机组的换热器作为其冷热源实现供热制冷,而间接式系统的再生水需经过换热器进行换热,再生水与热泵机组没有直接连通,形成两个独立环路。两种方式各有利弊,应根据具体项目情况来选择比较合适的系统。 系统方案设计的主要技术路线即为
15、直接式与间接式再生水源热泵系统比较、选择、设计。影响因素主要为再生水水源水温、水量、水质条件和各系统的技术经济可行性。根据前面对项目水源条件分析结果,水源最大小时流量为6700m3/h,最小小时流量为6400m3/h,;水源水温的设计条件冬季最高为17,最低为10;无论是直接式系统还是间接式系统水质均按三级排放水标准进行系统设计;水源具有腐蚀性,系统的关键设备、部件须进行耐腐蚀设计,须设计自清洗过滤系统,须设计换热器自清洗系统。 4.2.1间接式再生水源热泵系统间接式的污水热泵系统的换热器常用的主要有两种类型,一种为壳管式换热器,一种为板式换热器;为更多得提取再生水热量,换热器二次侧采用20%
16、的乙二醇溶液作为换热介质。壳管换热器污水、软化水间换热温差大,一般为5以上,换热效率较低,易受水量局限,且造价高,占地面积大,一般不推荐该方式。图1 采用壳管式换热器的间接式再生水源热泵系统示意图板式换热器再生水、软化水间换热温差一般可低至2左右,换热效率高,利用温差为大,换热温差愈小所需板片面积越大,会增加换热器投资,设计为3换热温差。图2 采用板式换热器的间接式再生水源热泵系统示意图间接式系统把再生水和热泵系统分为两个独立环路,热泵空调系统只利用再生水源的温差换热,不受水质影响,热泵主机为常规水源热泵机组,机组效率高,在系统投资方面具有优势。但在运行维护方面,再生水的过滤和换热环节需增加投
17、入,进行换热器的定期清洗以保持长期高效换热效率,热泵机组的运行效率高,整体系统的经济性高。4.2.2直接式再生水源热泵系统直接式再生水源热泵系统对热泵机组的技术要求比较高,必须进行非标设计,且在使用季节的切换时需对系统进行彻底的清洗,同时进入热泵前的再生水前端处理中,须设计自清洗过滤系统,需对系统的关键设备、部件须进行耐腐蚀设计,须设计热泵换热器自清洗系统。该系统的初投资费用较高,但系统简洁,再生水利用效率高。图3 直接式污水源热泵系统示意图将直接式再生水源热泵系统和间接式再生水源热泵系统进行综合比较,如下表所示。表4 直接式与间接式再生水源热泵系统的综合比较分项直接式间接式热泵机组非标准设计
18、高效,标准化设计水泵能耗低中再生水源水温受限条件小受限条件大再生水源水量受限条件小受限条件大再生水源水质直接影响热泵机组,处理精度要求低与热泵机组无直接接触处理精度要求较高系统总造价高低系统维护性难易综上,根据本项目特点,考虑系统的技术经济性要求,拟采用间接式(板式换热器)再生水源热泵系统,力求做到系统设计最优化,投资最小化,运行维护最简化。4.3方案概述 本项目设计为间接式再生水源热泵系统,系统流程描述如下:本系统再生水源来自*污水处理厂二级排放水,经DN1000的水泥管线,自流到再生水源热泵空调机房取水口,最大水量为7000m3/h,为保证再生水水源的稳定性,设置一个容积为4000m3的再
19、生水蓄水池,再生水提升泵从蓄水池中取水,经全自动自清洗过滤器过滤后进入板式换热器进行换热,板换二次侧循环水系统与热泵机组的蒸发器或冷凝器换热,作为热泵系统的冷热源;再生水经板换取热或放热后退回原河道下游。热泵空调软化水系统提供建筑末端系统所需的采暖循环水。因本项目规模较大,分区设立换热站进行供热。考虑到设置了一个容积为4000m3的再生水蓄水池,按照污水处理厂平均水量6700 m3/h计算该项目供热能力。再生水由10利用到4,可提供热量:Q=1.1636700(10-4)=46752.6kW热泵机组制热效率(COP)取为3.6,结合热泵机组可为末端提供的热量为:Q供=QCOP/(COP-1)=
20、64734.4kW结合上文热负荷估算分析,综合建筑面积热指标取值45 W/(包括5%的管网损失),将*污水处理厂污水热能结合热泵系统全部利用起来可解决140万平米规划新建建筑供暖需求。4.4 主要设备的设计选型4.4.1过滤器的设计选型 本项目水源为污水处理厂二级排水,过滤器在设计选型时须遵循满足水质、水处理量和水处理精度的要求,确保运行安全可靠的原则。按照以下技术要求进行设备选型:表5 过滤器设计要求序号技术要求1工况参数冬季总处理水量:6700m3/h水温:102过滤器性能指标2.1单台设计处理水量:1200m3/h2.2过滤精度:500 m2.3过滤器承压:1.0MPa2.4过滤器工作压
21、力:0.2 MPa1.0MPa2.5过滤器反清洗时压力损失:0.05MPa2.6过滤器清洗方式:电动吸式清洗。2.7过滤器使用寿命: 20年2.8持续供水,过滤器自清洗时不断流。3过滤器材质、工艺要求3.1滤筒整体(包括滤网、加强筋、支架等)材料:整体不锈钢316L。3.2过滤器壳体材料:优质碳素钢,内外表面加防腐涂层。3.3设备进、出水口配带配对法兰、螺栓、螺母及垫片,过滤器并联运行。3.4排污导管材料:不锈钢316。3.5清洗机构材料:不锈钢316L 。本项目最大小时用水量6700m3/h,设计选择六台CBR-CW-Y4S全自动自清洗过滤器,单台处理量1200 m3/h,设计为六用一备,增
22、加了系统的安全可靠性。过滤器主要零部件材质如表6所示。表6 过滤器主要零部件材质本体涂衬环氧树脂的碳钢37-2滤网不锈钢316L(编织)滤网支架结构PVC密封圈橡胶,EPDM控制单元黄铜,不锈钢,铝排污阀铸铁、天然橡胶、环氧树脂涂布过滤器机械部分满足以下要求:1) 过滤器满足长期连续工作,滤网可进行自动清洗,排污。2) 自动过滤器由筒体、过滤网、过滤网支撑结构、过滤器清洗装置、控制系统、压差开关、排污阀、清洗计数器等组成。3) 产品制造符合设计要求,出厂前进行组装、调试及性能试验。4) 筒体材料采用优质碳素钢结构的焊接钢管,防锈处理,环氧树脂涂料涂层厚度200220微米,符合ISO-9001各
23、项规定的要求。5) 滤网、排污内部导管等采用不锈钢316L材料制造。过滤器电气部分设计如下:1) 自动过滤器进、出水管上装有PDS灵敏的压差传感器,压差检测准确、可靠。并且装有相应的进、出口压力表。2) 电动机满足IEC标准,采用鼠笼式感应电动机,防护等级为IP54。3) 自动过滤器的冲洗电机设过热保护机构,当电机过热保护机构动作时,自动控制柜接受过热信号,并自动切断冲洗电机电源,使故障指示灯亮。4) 当过滤器产生故障时,控制柜输出报警信号,以便操作人员及时进行检修。5) 过滤器控制系统不仅设差压清洗,还设有定时清洗功能(冲洗间隔时间最大约24小时并可调)及连续清洗功能,确保清洗效果。表7 控
24、制盘上的主要部件列表序号主要部件名称品牌或型号单位数量备注1可编程程序控制器SIEMENS台1德国2电源转换器440.380/24V/120V套1德国3电机保护器Telemecanigue套1法国4电路保护装置ABB套4德国5电路状态指示器Telemecanigue套2法国6电机启动器Telemecanigue套2法国7时间设定器OMRON H3CR套1日本8差压传感器604DZI套1美国9电磁阀GEM-SOL套1德国4.4.2 板式换热器设计选型1、板换材质的选择本项目水源为污水处理厂二级排水,污水水质对板换的影响主要有三种:腐蚀、结垢及堵塞、微生物沉积生长,板换材质须满足水质要求,以确保系
25、统运行安全可靠。根据甲方提供已有水质参数,本项目二级排放水中氯根和硫酸根含量较少,对于不锈钢材料不构成腐蚀威胁;腐蚀另有其它原因;初步判断引起腐蚀的污垢种类为:生物、颗粒、析晶和腐蚀污垢。 *新源科技有限公司和清华大学热能系共同完成的国家科技部重点科技攻关课题再生水热能综合利用系统关键技术的研究,采用实验室电化学法进行了金属材质的腐蚀性实验。根据得到的不同不锈钢材质在不同的污水环境中的电化学腐蚀试验结果,结合本项目的水质情况,初步选择适合该项目的性价比好的板换板材为不锈钢316。2、板换换热温差的确定板式换热器的换热温差直接影响板换的面积和造价,为降低系统初投资,设计板换对数换热温差为3。按照
26、以下技术要求进行设备选型:表8 板式换热器选型技术要求序号技术要求1形式:水/水板式换热器 1.1换热介质一次侧再生水(三级出水)二次侧20%乙二醇溶液1.2换热器冲洗方式:反冲洗2工况参数2.1冬季运行工况一次侧进/出口温度:10/4 一次侧压力降: 80 KPa二次侧进/出口温度:7/1二次侧压力降:80 KPa对数平均温差:32.2一次侧设计压力:1.6MPa;二次侧设计压力:1.6 MPa。3换热器性能指标3.1使用寿命: 30年3.2换热器传热效率:99%3.3换热器应在环境温度不低于5不超过45,相对湿度不超过90%的条件下正常运行。4换热器材料、工艺要求4.1板片的材料:优质AI
27、SI316不锈钢,原装进口。4.2换热器内流道形式:自由流4.3板片厚度:0.5mm4.4板片两端应有对称的悬挂定位结构。4.5垫片材料:NBR橡胶。4.6垫片固定方式:免粘接4.7接口管道形式:法兰连接。4.8法兰、接管材料:AISI316不锈钢。4.9导杆、支柱材料:优质碳素钢,进行表面防锈处理。4.10夹紧螺柱材料:45#优质碳素钢,进行表面防锈处理,符合ISO630标准。4.11框架板、压板材料:Q235-B普通碳素钢,经喷丸除锈、喷漆、烘干等工艺处理。4.12焊接材料应符合GB/T983的规定。4.13换热器框架应留有不小于15%的板片增容能力。4.14换热器采用单流程、平行流设计。
28、4.15一、二次侧进出口在同一方向。3、板换防堵塞、防结垢设计二级水中的污杂物、悬浮物会对污水热泵系统产生沉积、附着、结垢、堵塞等不利影响,导致换热量下降。本方案针对这一不利影响,对板换换热系统进行了专门的设计:板式换热器选择自由流板式换热器,增大板间距;设有反冲洗管路,定时切换水流进入板换的方向,进行板换的自动反冲洗;采用我公司专利产品板式换热器CIP在线清洗系统,定期对板换进行在线自清洗,经实验验证,该系统短时间内可恢复板换换热效率90%,可保证换热器持续的高换热效果。4、板换的选型计算书本方案选择7组丹麦SONDEX的自由流板式换热器(6用1备),每组由两台板换串联组成,材质为不锈钢31
29、6,满足本项目再生水利用的防腐蚀要求。板换设计计算书如下:表9 再生水板式换热器型号参数表 Sondex A/S PHE - Design & DatalistPHE-Type SF160-IS10-284-TLA-LIQUID Hot side Cold sideFlowrate (m3/h) 1116.67 1409.60Inlet temperature (C) 10.00 3.30Outlet temperature (C) 6.75 6.00Pressure drop (bar) 0.13 0.21Heat exchanged (kW) 4231Thermodynamic prope
30、rties: Water 20 EtGlycolDensity (kg/m) 999.68 1,050.17Specific heat (kJ/kg*K) 4.20 3.80Thermal conductivity (W/m*K) 0.58 0.51Mean viscosity (mPa*s) 1.39 2.51Wall viscosity (mPa*s) 1.55 2.09Fouling factors (m*K/kW) 0.00 0.00Dimensioning factor % 0.71Inlet branch F1 F3Outlet branch F4 F2Design of Fram
31、e / Plate:Plate arrangement (passes*channel) 1 x 141 + 0 x 0Plate arrangement (passes*channel) 1 x 142 + 0 x 0Number of plates 284Effective heat surface (m) 451.20Overall K-value Duty/Clean (W/m*K) 2,520.98 2,538.90Plate material 0.9 mm AISI 316Gasket material / Max. temp. NITRIL HT SONDERLOCK (G) /
32、 150Max. design temperature (C) 90.00Max. Working/test pressure (bar) 10.00 13.00Max. Differential pressure (bar) 10.00Approval NoneLiquid volume (liter) 3962Frame length (mm) 6235 Max. No. of Plates 339Net weight (kg) 9319Frame type ISConnections HOT side : DN 300 Flange St.37 PN10Connections COLD
33、side: DN 300 Flange St.37 PN10Sondex A/S Jernet 9 DK-6000 Kolding Sondex A/S PHE - Design & DatalistPHE-Type SF160-IS10-286-TLA-LIQUID Hot side Cold sideFlowrate (m3/h) 1116.67 1409.60Inlet temperature (C) 6.75 1.00Outlet temperature (C) 4.00 3.29Pressure drop (bar) 0.13 0.21Heat exchanged (kW) 3584
34、Thermodynamic properties: Water 20 EtGlycolDensity (kg/m) 1,000.03 1,051.37Specific heat (kJ/kg*K) 4.20 3.80Thermal conductivity (W/m*K) 0.57 0.51Mean viscosity (mPa*s) 1.52 2.86Wall viscosity (mPa*s) 1.67 2.42Fouling factors (m*K/kW) 0.00 0.00Dimensioning factor % 0.70Inlet branch F1 F3Outlet branc
35、h F4 F2Design of Frame / Plates:Plate arrangement (passes*channel) 1 x 142 + 0 x 0Plate arrangement (passes*channel) 1 x 143 + 0 x 0Number of plates 286Effective heat surface (m) 454.40Overall K-value Duty/Clean (W/m*K) 2,447.99 2,465.19Plate material 0.9 mm AISI 316Gasket material / Max. temp. NITR
36、IL HT SONDERLOCK (G) / 150Max. design temperature (C) 90.00Max. Working/test pressure (bar) 10.00 13.00Max. Differential pressure (bar) 10.00Approval NoneLiquid volume (liter) 3990Frame length (mm) 6235 Max. No. of Plates 339Net weight (kg) 9356Frame type ISConnections HOT side : DN 300 Flange St.37
37、 PN10Connections COLD side: DN 300 Flange St.37 PN104.4.3热泵主机的设计选型 根据负荷要求,选择六台约克离心式高温热泵机组承担系统热负荷,型号为:CYKZSZRK7U25DLDJG。 热泵机组的主要性能参数如下表所示:表10 热泵机组主要性能参数表制热量11000kW输入功率3019kW能效比(COP)3.643蒸发器进出水温度6/1(最低)蒸发器流量1117t/h冷凝器进出水温度70/57冷凝器流量727t/h压缩机型式离心式压缩机压缩机数量2能量调节范围0%100%无级调节制冷剂R134a电源10kV,50Hz外形尺寸7214mm66
38、04mm4928mm运行重量61554kg4.5系统原理图系统原理图如下: 图4 间接式再生水源热泵系统原理图4.6主要设备选型汇总本系统主要设备包括自清洗过滤器,板式换热器,热泵主机,各环路循环水泵,软化水及定压系统装置等,各设备技术参数型号如下: 表11 主要设备选型参数表设备型号主要参数额定功率品牌备注离心式水源热泵机组CYKZSZRK7U25DLDJG制热量11000kW3019kW约克6台自洗式过滤器CBR-CW-Y4S L=1200m3/h 0.5mm以色列阿米亚德6用1备板式换热器一次侧:104 二次侧:71换热量:7792kW 材质:不锈钢 316丹麦SONDEX6用1备CIP在线反冲洗系统*1套,