《HAOWEITAO焦炉煤气湿法脱硫工艺设计(初样).doc》由会员分享,可在线阅读,更多相关《HAOWEITAO焦炉煤气湿法脱硫工艺设计(初样).doc(35页珍藏版)》请在三一办公上搜索。
1、1 绪 论31.1概述31.2焦炉煤气净化的现状41.3栲胶的认识41.4 栲胶法脱硫的优缺点61.4.1优点61.4.2缺点61.4.3硫化物对作为原料气生产工艺过程有何危害71.4.4粗煤气脱硫系统的正常开车操作要点71.4.5脱硫后硫化氢含量高的主要原因81.4.6脱硫后硫化氢含量高的处理方法81.5 设计任务的依据92 生产流程及方案的确定93 生产流程说明103.1反应机理103.1.1碱性水溶液吸收H2S103.1.2五价钒络合物离子氧化HS-析出硫磺,五价钒被还原成四价钒103.1.3 醌态栲胶氧化四价钒成五价钒,空气中的氧氧化酚态栲胶使其再生,同时生成H2O2103.1.4 H
2、2O2氧化四价钒和HS-103.2主要操作条件113.2.1溶液组分113.2.2温度123.2.3 CO2的影响123.3 工艺流程123.4主要设备介绍143.4.1填料塔143.4.2氧化槽143.4.3反应槽15内有隔板以块。主要作用是增加脱硫液的反应时间。153.4.4贫液泵153.4.5硫泡沫槽153.4.6 过滤器153.4.7 熔硫釜164 工艺计算书174.1原始数据174.1.1焦炉煤气组分:174.1.2脱硫液组分:174.1.3设计工艺参数174.2物料衡算1194.2.1 H2S脱除,G1,kg/h194.2.3生成Na2S2O3消耗H2S的量G2, Kg/h194.
3、2.4Na2S2O3生成量,G3,Kg/h194.2.6理论硫回收率,204.2.7生成Na2S2O3消耗纯碱的量G5,Kg/h204.2.10回收率,204.2.11硫膏的理论产量204.3热量衡算214.3.1冷却塔热量衡算214.3.2硫泡沫槽热量衡算214.3.3熔硫釜热量衡算225 主要设备的工艺计算和设备选型235.1主要设备的工艺尺寸235.1.1填料吸收塔设计计算235.1.2喷射再生槽的计算5265.2辅助设备的选型8295.2.1液体分布装置295.2.2液体再分布器295.2.3填料支承板295.2.4填料压板305.2.5封头305.2.7人孔,手孔305.2.8加强圈
4、306 设备稳定性及机械强度校核计算316.1壁厚的计算9316.1.1塔体壁厚316.1.2封头壁厚316.2 机械强度的校核10326.2.1 质量载荷326.2.2 风载荷331 绪 论1.1概述 焦炉煤气粗煤气中硫化物按其化合态可分为两类:无机硫化物,主要是硫化氢(H2S),有机硫化物,如二硫化碳(),硫氧化碳(COS),硫醇()和噻吩()等。有机硫化物在温度下进行变换时,几乎全部转化为硫化氢。所以煤气中硫化氢所含的硫约占煤气中硫总量的90%以上,因此,煤气脱硫主要是指脱除煤气中的硫化氢,焦炉煤气中含硫化氢815g/m3,此外还含0.51.5g/m3氰化氢。 硫化氢在常温下是一种带刺鼻
5、臭味的无色气体,其密度为1.539kg/nm3。硫化氢及其燃烧产物二氧化硫()对人体均有毒性,在空气中含有0.1%的硫化氢就能致命。煤气中硫化氢的存在会严重腐蚀输气管道和设备,如果将煤气用做各种化工原料气,如合成氨原料气时,往往硫化物会使催化剂中毒,增加液态溶剂的黏度,影响产品的质量等。因此,必须进行煤气的脱硫。1.2焦炉煤气净化的现状煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法
6、脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。但此法在操作中易发生堵塞,而且药品价格昂贵,近几年来,在改良A.D.A的基础上开发的栲胶法克服了这两项缺点。它是以纯碱作为吸收剂,以栲胶为载氧体,以为氧化剂。基于此,在焦炉煤气脱硫工艺的设计中我采用湿式栲胶法脱硫工艺。1.3栲胶的认识 栲胶是由植物的皮,果,茎及叶的萃取液熬制而成的。其主
7、要成分为丹宁,约占66%,以栲胶来配制脱硫液效果最佳。栲胶的主要成分为多种水解丹宁,是有许多结构相似的酚类衍生物所组成的多酚基化合物,由于其含有许多活泼的烃基,所以具有很强的吸氧能力,在脱硫过程中起着载氧的作用。碱性栲胶脱硫液是由栲胶,碳酸钠及偏钒酸钠等主要成分构成的水溶液。栲胶水溶液在空气中易被氧化,即丹宁中较活泼的羟基易被空气中的氧氧化,生成醌态化合物。特别是当溶液的PH值大于9的时候,丹宁的氧化特别显著。由于栲胶水溶液在较高浓度时成为典型的胶体溶液,并且在较低温度时容易出现及沉淀,因此在配制脱硫液前必须对栲胶水溶液进行熟化预处理。即将含栲胶2033g/l,Na2CO3380133g/l的
8、栲胶谁溶液直接通蒸汽与空气,在8090C的条件下氧化1024h,破坏其胶性。然后加及软水或稀氨水,配制成含栲胶1.02.6g/l,Na2CO3 22.3g/l,3.24 g/l, 22.5g/l 脱硫液,送入脱硫液储存槽,稀释后使用。脱硫过程中,酚类物质经空气再生氧化成醌态,因其具有较高电位,故能将低价钒氧化成高价钒,进而使吸收在溶液中的硫氢根氧化、析出单质硫。同时丹宁能与多种金属离子(如钒、铬、铝等)形成水溶性络合物;在碱性溶液中丹宁能用与铁、铜反应并在其材料表面形成丹宁酸性薄膜,因而具有防腐蚀作用。由于栲胶水溶液是胶体溶液,在将其配制成脱硫液之前,必须对其进行预处理,以消除共胶体性和发泡性
9、,并使其由酚态结构氧化成醌态结构,这样脱硫溶液才具有活性。在栲胶溶液氧化过程中,伴随着吸光性能的变化。当溶液充分氧化后,其消光值则会稳定在某一数值附近,这种溶液就能满足脱硫要求。通常制备栲胶溶液的预处理条件列举在表1中:表1 制备栲胶溶液的与处理条件方法项目用Na2CO3配制溶液栲胶浓度(gL-1)1030碱度N1.02.5氧化温度7090空气量溶液不翻出器外消光值稳定在0.45将纯碱溶液用蒸汽加热,通入空气氧化,并维持温度8090,恒温10h以上,让丹宁物质发生降解反应,大分子变小,表面活性物质变成非表面活性物质,达到预处理目的。栲胶法脱硫工艺,将碱性栲胶溶液打入溶液循环槽,自循环槽出来,经
10、过滤加压后进入系统的裂脱塔,吸收气体中的H2S,由裂脱塔出来的溶液进入裂脱再生塔,再生好的溶液由塔底流到溶液循环槽,经过滤加压循环使用。脱硫溶液从循环槽出来后经过滤加压送到变脱塔,吸收气体中的H2S,由变脱塔出来的溶液进入变脱溶液再生塔,再生好的溶液由变脱再生塔出来,进入变脱溶液循环槽,再经过滤加压,如此循环使用。1.4 栲胶法脱硫的优缺点1.4.1优点栲胶法脱硫是目前工业化生产中应用较多的湿式脱硫方法,它本身有许多优越之处,但是与此同时,也存在着许多的不足。栲胶是聚酚类(丹宁)物质,可替代ADA作为载氧体,价格低廉,栲胶本身还是良好的络合剂,不需要添加酒石酸钾钠的络合剂。此法的吸收效果与AD
11、A相近,且具有不容易堵塞脱硫塔填料,栲胶资源丰富,价格便宜以及脱硫液活性好,性能稳定,腐蚀性小等优点。此外,脱硫效率大于98,所析出的硫容易浮选和分离。栲胶法脱硫整个脱硫和再生过程为连续在线过程,脱硫与再生同时进行,不需要设置备用脱硫塔。煤气脱硫净化程度可以根据企业需要,通过调整溶液配比调整,适时加以控制,净化后煤气中H2S含量稳定。(1)栲胶资源丰富、价格低廉、无毒性、脱硫溶液成本低,因而操作费用要改良ADA法低。(2)脱硫溶液的活性好、性能稳定、腐蚀性小。栲胶本身既是氧化剂,又是钒的络合剂,脱硫溶液的组成比改良ADA法简单,且脱硫过程没有硫磺堵塔问题。(3)脱硫效率大于98,所析出的硫容易
12、浮选和分离。(4)栲胶法脱硫整个脱硫和再生过程为连续在线过程,脱硫与再生同时进行,不需要设置备用脱硫塔。(5)煤气脱硫净化程度可以根据企业需要,通过调整溶液配比调整,适时加以控制,净化后煤气中H2S含量稳定。1.4.2缺点(1)配制脱硫液和往系统中补加时都要经过加热溶化制备过程。(2)设备较多,工艺操作也较复杂,设备投资较大。1.4.3硫化物对作为原料气生产工艺过程有何危害(1)对催化剂的危害 硫使甲烷化催化剂,高(中)温变换催化剂,甲醇合成催化剂何氨合成催化剂的主要毒物之一,能使它们的活性和寿命降低;(2)对产品质量的危害 碳铵生产过程中,当变换气中硫化氢含量高时,在碳化母液中积累增高。使母
13、液粘度增大,碳铵结晶变油,不仅造成分离困难,同时,由于生成FeS沉淀致使碳铵颜色变黑;(3)在尿素生产过程中,硫化氢进入尿素合成塔时会生成硫脲,污染尿素产品,降低产品质量;(4)对铜洗操作的危害 铜氨液吸收硫化氢生成C uS沉淀,这种沉淀物颗粒很细,悬浮在溶液中导致溶液粘度增大,发泡性增强,铜耗上升,破坏铜洗系统的正常运行;(5)对金属腐蚀 硫化氢能使碳钢设备及管线发生失重腐蚀,应力腐蚀,氢脆和氢鼓泡,使设备及管线寿命减短;(6)对人体的毒害 硫化氢是强烈的神经毒物,接触人的呼吸道粘膜后,即分解成Na2S,加之本身的酸性对人体的呼吸道粘膜有明显的刺激作用。 硫化氢经呼吸系统进入血液中来不及氧化
14、时就会引起会全身中毒反应,随硫化氢浓度的增加会造成呼吸麻痹,窒息以致停止呼吸而死亡。因此,为了提高企业最终产品质量和保持人们优良的生存环境,对粗煤气进行脱硫是非常必要的。1.4.4粗煤气脱硫系统的正常开车操作要点(1)检查各设备,管道,阀门,分析取样及电器,仪表等,必须正常完好。(2)检查系统内所有阀门的开关位置,应符合开车要求;(3)与供水,供电,供气部门及造气,压缩工段联系,作好开车准备;(4)将脱硫液成分调整在工艺指标范围内;(5)氨规程进行系统吹净,清洗,试漏和置换工作(系统未经检修处于保压状况下对的开车,不进行该项工作);(6)调净气柜出口水封积水;(7)开启各气体冷却塔和清洗塔进水
15、阀,并调节好水量及各塔液位;(8)开启贫液泵进口阀,启动贫液泵,向脱硫塔打入脱硫液,并调节好液位;(9)开启富液泵进口阀,启动富液泵,向再生槽送液;(10)根据脱硫液循环量和再生液槽液位,调节好贫液泵,富液泵的打液量,并控制好贫液槽,富液槽液位计流量;(11)开启罗茨鼓风机,并调节好粗煤气流量;(12)根据粗煤气流量大小,调节好液气比。适当开启清洗塔,放空阀,焦炉煤气脱硫合格后,与压缩工段联系,并关闭放空阀,向压缩机一段送气;(13)根据再生槽的硫泡沫形成情况,调节液位调节器,保持硫泡沫的正常溢流;(14)分析粗煤气中氧含量合格后,开启静电除焦油塔。1.4.5脱硫后硫化氢含量高的主要原因(1)
16、进入系统的粗煤气中硫化氢含量过高,或进塔粗煤气气量过大;(2)脱硫液循环量小;(3)脱硫液成分不当;(4)脱硫液再生效率低或悬浮硫含量高;(5)进脱硫塔的粗煤气或贫液温度高;(6)脱硫塔内气液偏流,影响脱硫效率;1.4.6脱硫后硫化氢含量高的处理方法(1)联系造气工段更换含硫量低的煤炭,降低进脱硫系统粗煤气中的硫化氢含量或适当减少粗煤气气量;(2)适当加大脱硫液循环量;(3)把脱硫液成分调整扫工艺指标要求范围内;(4)检修喷射再生器或适当提高溶液进再生器的压力,增加自吸空气量,提高溶液的再生凶案绿;检修离心机滤网,减少漏泡沫量,增加再生槽硫泡沫的溢流量,减少溶液中悬浮硫含量;(5)加大气体冷却
17、器的冷却水,降低进系统粗煤气温度;(6)检查清理脱硫塔喷头及填料,确定气液分布均匀。1.5 设计任务的依据工艺参数:粗煤气入吸收塔时H2S的含量,C1=10 g/m3净化气中H2S的含量,C2=0.15 g/m3入吸收塔焦炉煤气量,G0 = 24000m3/h入冷却塔焦炉煤气温度,t1=50 出冷却塔入吸收塔焦炉煤气温度,t2=35 入吸收塔焦炉煤气压力,1.39atm(表)设计目标:净化煤气中H2S浓度0.15 g/m32 生产流程及方案的确定焦炉煤气的净化主要是要脱除煤气中的H2S,脱硫的方法有两种:干法脱硫、湿法脱硫。干法脱硫既可以脱除无机硫,又可以脱除有机硫,而且能脱至极精细的程度,但
18、脱硫剂再生较困难,需周期性生产,设备庞大,不宜用于含硫较高的煤气,一般与湿法脱硫相配合,作为第二级脱硫使用。湿法脱硫可以处理含硫量高的煤气,脱硫剂是便于输送的液体物料,可以再生,且可以回收有价值的元素硫,从而构成一个连续脱硫循环系统。现在工艺上应用较多的湿法脱硫有氨水催化法、改良蒽醌二磺酸法(A.D.A法)及有机胺法。其中改良蒽醌二磺酸法的脱除效率高,应用更为广泛。但此法在操作中易发生堵塞,而且药品价格昂贵,近几年来,在改良A.D.A的基础上开发的栲胶法克服了这两项缺点。3 生产流程说明3.1反应机理反应机理是脱硫的根本,也是整个脱硫过程中的核心部分。以下是栲胶法脱硫的反应机理。3.1.1碱性
19、水溶液吸收H2SNa2CO3+H2SNaHS+NaHCO33.1.2五价钒络合物离子氧化HS-析出硫磺,五价钒被还原成四价钒2V5+HS1-2V4+S+H1+ 3.1.3 醌态栲胶氧化四价钒成五价钒,空气中的氧氧化酚态栲胶使其再生,同时生成H2O2TQ(醌态)+V4+2H2OTHQ(酚态)+V5+2OH-2THQ+O22TQ+H2O23.1.4 H2O2氧化四价钒和HS-H2O2+V4+V5+2OH-H2O2+HS-H2O+S+OH-3.1.5 当被处理气体中有CO2、HCN、O2时产生如下副反应:NaCO3+CO2+H2O2NaHCO3Na2CO3+2HCN2NaCN+H2O+CO2NaCN
20、+SNaCNS2NaCNS+5O2Na2SO4+CO2+SO2+N22NaHS+2O2Na2S2O3+H2O3.2主要操作条件3.2.1溶液组分溶液的主要组分是碱度、NaVO3、栲胶。3.2.1.1 碱度溶液的总碱度与其硫容量成线性关系,因而提高总碱度是提高硫容量的有效途径,一般处理低硫原料气时,采用的溶液总碱度为0.4N,而对高硫含量的原料气则采用0.8N的总碱度。PH值再8.59.0。碱度过高,副反应加剧。3.2.1.2 NaVO3含量NaVO3的含量取决于脱硫液的操作硫容,即与富液中的HS-浓度符合化学计量关系。应添加的理论浓度可与液相中HS-的摩尔浓度相当,但在配制溶液时往往要过量,控
21、制过量系数在1.31.5左右。3.2.1.3栲胶浓度作为氧载体,栲胶浓度应与溶液中钒含量存在着化学反应的计量关系。从络合作用考虑,要求栲胶浓度与钒浓度保持一定的比例,同时还应满足栲胶对碳钢表面缓蚀作用的含量要求。目前还无法有化学反应方程计算所需的栲胶浓度,根据实践经验,比较适宜的栲胶与钒的比例为1.11.3左右。工业生产中使用的溶液组成见下表2:表2 工业生产使用的栲胶溶液组成溶液类别总碱度NNa2CO3(gL-1)栲胶(gL-1)NaVO3(gL-1)稀溶液0.4341.81.5浓溶液0.8688.47.03.2.2温度操作温度低,再生效果差;温度过高,副反应加剧,生成大量硫代硫酸钠灯盐类,
22、常温范围内,H2S、CO2脱除率及Na2S2O3生成率与温度关系不敏感。再生温度在45以下,Na2S2O3的生成率很低,超过45时则急剧升高。通常吸收与再生在同一温度下进行,约为3040。3.2.3 CO2的影响栲胶脱硫液具有相当高的选择性。在适宜的操作条件下,它能从含99的CO2原料气中将200mg/m3(标)的H2S脱除至45mg/m3(标)以下。但由于溶液吸收CO2后会使溶液的PH值下降,使脱硫效率稍有降低。3.3 工艺流程来自除尘工段的焦炉煤气从脱硫塔底部进入,与塔顶上喷淋下来的栲胶脱硫液逆流接触,在极短时间内完成吸收硫化氢的反应。脱除硫化氢的煤气由塔顶出来,经旋流板,分离器分离掉所夹
23、带的液滴后去压缩工段。脱硫后的富液由塔底出来去脱硫塔液封槽,液封槽出来进入富液槽,然后又再生泵加压送到喷射器,在喷射器内自吸空气并在喉管及扩散管内进行反应,然后液气一起进入在再生槽,由底部经筛板上翻,进行栲胶溶液的氧化再生和硫泡沫浮选,再生后的贫液流入贫液槽,再生脱硫泵分别送往脱硫塔,循环使用。 喷射再生槽顶浮选出来的硫泡沫自动溢流入中间泡沫槽,再由泡沫泵抽硫泡沫到上泡沫槽,经加温,搅拌,静止分层后,排去上清液,该上清液流入富液槽内,硫泡沫经真空过滤机过滤,滤液流入地下槽,硫膏进入熔硫釜进行熔硫,熔融硫流入铸模,待冷却成型后即成为副产品,硫膏。拟设计栲胶法脱硫及再生反应过程如下:(1) 吸收:
24、在吸收塔内原料气与脱硫液逆流接触硫化氢与溶液中碱作用被吸收;(2) 析硫:在反应槽内硫氢根被高价金属离子氧化生成单质硫;(3)再生氧化:在喷射再生槽内空气将酚态物氧化为醌态;以上过程按顺序连续进行从而完成气体脱硫净化,湿法脱硫和再生工艺流程如下(见图):1分离器;2脱硫塔;3水封;4循环槽;5溶液泵;6液位调节器; 7再生槽;8硫泡沫槽;9真空过滤机;10熔硫釜;11空气压缩机;图1 湿法栲胶脱硫工艺流程简图3.4主要设备介绍3.4.1填料塔填料塔用于要求高的H2S脱除效率。用作脱硫的填料塔每段填料间设有人孔,以供检查用。填料塔结构简单,造价低廉,制造方便。这种塔体,喷淋装置,填料再分布器,栅
25、板以及气,液的进出口等部件组成。而填料是填料塔的核心部作分,填料塔操作性能的好坏与所选的填料有很大的关系,选择填料应当遵循一下原则:单位体积填料的表面积大,气液相接触的自由体积大;填料空隙率要大,气相阻力小;重量轻,机械强度高;耐介质腐蚀,经久耐用,价格低廉。而填料的类型,尺寸和堆积方式决定于所处理的介质的性质。气液流量的大小和允许的压力降。本次设计,我选用的是聚丙烯阶梯环(50mm25 mm1.5mm)的乱堆填料,这种填料塑料的表面较光滑,所以不易被硫堵塞,用这种填料同时有很高的脱硫效率。填料的作用是完成对脱硫液及气体的再分布,同时为气液分布提供较大的相界面。脱硫液从塔顶经分布器均匀喷淋在填
26、料上,再填料表面形成液膜,并向下流动,与经填料空隙上升的气体接触,完成对H2S的吸收。3.4.2氧化槽 世界上使用最多的是有空气分布板的垂直槽,圆形多孔板安装于氧化槽的底部,孔径一般为2mm,空气压力必须克服氧化槽内溶液的压头与分布板的阻力,空气在氧化器的截面均匀的鼓泡,液体与空气并流向上流动,硫泡沫在槽顶部的溢流堰分离,分离硫后的清液在氧化槽顶部下面一点引出。这种形式的氧化槽需要鼓风机将空气压入。中国很多工厂使用一种自吸空气喷射型的氧化槽,不需要空气鼓风机。液体加压从喷嘴进入,空气从文丘里的喉管吸入。氧化槽是一大直径的圆槽,槽内放置多支喷射器。氧化槽目前使用最佳的是双套筒二级扩大式,脱硫液通
27、过喷射再生管道反应,氧化再生后,经过尾管流进浮选筒,在浮选筒进一步氧化再生,并起到硫的浮选作用。由于再生槽采用双套筒,内筒的吹风强度较大,不仅有利于氧化再生,而且有利于浮选。内筒上下各有一块筛板,板上有正方形排列的筛孔,直径15mm,孔间距20mm,开孔率44%。内筒吹风强度大,气液混合物的重度小,而内外筒的环形区基本上无空气泡,因此液体重度大。在内筒和环形空间由于重度不同形成循环。氧化槽的设计有如下三个基本参数要求的空气流量;氧化器的直径;有效的液体容积。空气流量正比于硫的产量、反比于液体在氧化器内的有效高度,比值可按氧化器内每米有效液面高度氧利用率为0.6%0.7%来计算。氧化器直径正比于
28、空气流量与空气比重的平方,为了得到良好的硫浮选,空气流速一般选2530m3/(minm2)截面。液体在氧化器的停留时间正比于液体流量,要求的停留时间与氧化器数量有关,当用一个氧化器时,停留时间约45min,用两个氧化器停留时间不超过30min,多级氧化器有较高的气液传质效率,第一个氧化器出来的液体供给第二个氧化器,硫泡沫从第二个氧化器顶部分离,第一个氧化器的空气流量大,增大湍流使传质加快。第二个氧化器空气流量较小,使硫浮选。3.4.3反应槽内有隔板以块。主要作用是增加脱硫液的反应时间。3.4.4贫液泵完成对贫液的升压与输送任务。H=54m,10SH-6A,Q=468 m3/h。3.4.5硫泡沫
29、槽硫泡沫槽是一锥形底的钢制圆筒,槽顶设有1525转/min的搅拌机一个,以保持槽内硫泡沫经常呈悬浮状态。此槽容积可按存放36h的硫泡沫存量计算。3.4.6 过滤器工业上常用连续作业的鼓形真空过滤机,所需过滤面积可按每1m2过滤面积于1h内能滤过干燥硫磺6080kg计算。通常采用的真空过滤机,当过滤面积为10m2时,其直径为2.6m,长为1.3m。中国最近使用戈尔膜过滤器来过滤硫泡沫。该过滤元件是由多振过滤薄膜袋组成,多孔膜的材料是聚四氟乙烯薄膜,可根据工作负荷的大小调整过滤薄膜袋的数量和膜的孔径,以达到良好的过滤效果,单台过滤器的膜面积为22.550m2。戈尔薄膜滤料由于表面有一层致密而多孔的
30、薄膜,不需要传统滤料的初始滤饼层,一开始过滤就是有效过滤,当经过一段时间后滤饼层积累到一定厚度,同样也影响过滤流量,这时可以给滤料一个以秒计的反向推动力,将滤料表面全部的滤饼迅速而轻松地从滤料表面推卸下来,称为反清洗。由于聚四氟乙烯自身的化学特性,它与任何物质均不粘连,因而所有的滤饼均可被清洗下来,滤料又恢复新滤料的过滤能力,这样过滤,反清洗,再过滤,再反清洗,一次又一次循环。这一工艺可在同样的时间内达到传统过滤器520倍的过滤流量,而用传统的过滤材料是无法实现这种频繁的反清洗工艺的。戈尔过滤器是由罐体、管路、花板、滤芯、气动挠性阀、自动控制系统等组成。戈尔膜过滤器一般安装在硫泡沫槽后。泡沫液
31、经1#阀进入过滤器,空气经3#阀排放后关闭3#阀,溶液经上腔进入贮槽。过滤一段时间后滤饼达到定值时,控制系统进入反冲状态,1#、2#、4#阀自动切换,反冲清膜,滤饼脱离袋沉降到锥底部,系统重新进入过滤状态。滤饼达到一定量时,开6#阀排硫膏,去熔硫釜熔成硫磺或脱水生成硫膏出售。使用戈尔膜过滤器,可将硫泡沫高度净化,如进过滤器前悬浮硫含量为8g/L,出膜过滤器清液悬浮硫含量8mg/L,取出的硫是硫膏,水分含量低,缩短了熔硫釜的熔硫时间,并节省蒸汽。3.4.7 熔硫釜熔硫釜是一个装有直接蒸汽和间接蒸汽加热的设备,其操作压力通常为0.4MPa。其容积按能充满70%75%计算,而放入的硫泡沫含有40%5
32、0%的水分。对于直径1.2m,有效高度2.5m的熔硫釜,每次熔化所需的时间约为34h。脱硫主要设备都用碳钢制作,因为其价格低廉,同时在许多的场合其性能可以满足使用的要求。为了防止设备被腐蚀,除选择适当的耐腐蚀材料制造设备外,还可以采用防腐措施对设备进行防腐。如在吸收塔,再生器的内表面可适当的涂覆保护层。或添加缓蚀剂等。而泵的密封采用机械密封,以减少溶液的漏损。机械密封是一种功耗小,泄漏率低,密封性能可靠,使用寿命长的转轴密封,被广泛地应用于各个技术领域中。以减少溶液的漏损。机械用适当的涂料涂刷为了防腐,在吸收塔、再生器的表面可用适当的涂料涂刷。4 工艺计算书4.1原始数据4.1.1焦炉煤气组分
33、:组分COCO2H2N2O2CH4Ar体积/%26.9710.1339.8220.930.391.30.494.1.2脱硫液组分:组分Na2CO3NaHCO3栲胶NaVO3浓度g/L22.33.242.12.34.1.3设计工艺参数焦炉煤气中H2S初始含量C1 = 10g/m3净化气中 H2S含量C2 = 0.15g/m3入吸收塔焦炉煤气气量G0 = 30000m3/h 入吸收塔焦炉煤气压力P0 = 1.39atm 出吸收塔焦炉煤气压力Pi = 1.37atm 入冷却塔焦炉煤气温度,t1=50 出冷却塔入吸收塔焦炉煤气温度,t2=35 硫容量 S = 0.2 Kg(H2S)/m3熔硫釜的工作周
34、期4h熔硫釜的操作压力0.4Mpa硫泡沫中硫含量S1 = 30 Kg/m3硫膏含量 S2=20%煤气平均等压比热容 =30.44 KJ/kmol硫泡沫槽溶液终温t3 = 800C;硫泡沫槽溶液初温t4 = 400C;熔硫釜硫膏终温t5 = 15 0C熔硫釜加热初温t6 = 135 0C入熔硫釜硫膏初始含水率80出熔硫釜硫膏含水率50硫膏密度S = 1500 Kg/m3硫泡沫密度f =1100Kg/m3硫泡沫比热容,Cf =3.68 KJ/(Kg0C);常用熔硫釜全容积为Vr = 1.6m3熔硫釜装填系数为7075%硫膏的比热容Cs = 1.8 KJ/(Kg0C) 硫膏的熔融热Ch=38.69
35、KJ/Kg熔硫釜周围空间的散热系数= 12.56 KJ/(mh0C)0.2MPa蒸汽的汽化热r1 = 2202.26 KJ/Kg0.4MPa蒸汽的汽化热r2 = 2135.2 KJ/KgH2S气体密度G = 1.05 Kg/m3 ;脱硫液液体密度L = 1050 Kg/m3熔硫釜表面积F = 9.2 m2喷射再生槽溶液流速Wi = 25 m/s通常Wi = 1828 m/s喷射再生槽喷嘴入口收缩角1 = 14喷射再生槽喷嘴喉管长度L6 = 3mm喷射再生槽吸气室收缩角2 = 30喷射再生槽管内空气流速取WA =3.5 m/s ;喷射再生槽尾管直径扩张角取3 = 7尾管中流体速We = 1 m/
36、s焊接接头系数 由于焦炉煤气气量大及H2S含量多,因此采用两个吸收塔并联,则: G0= G0/2=30000/2=15000 m3/h4.2物料衡算14.2.1 H2S脱除,G1,kg/hG1 = = G0(100.15)/1000=15000(10-0.15)/ 1000 = 147.75Kg/h4.2.2溶液循环量LT,m3/h LT = = 147.75 / 0.2 = 738.75m3/h式中 S 溶液硫容量,kg/m3,S = 0.2 Kg (H2S)/m34.2.3生成Na2S2O3消耗H2S的量G2, Kg/h取Na2S2O3的生成率为脱除量的8,则:G2 = G18=147.7
37、58 = 11.82Kg/h4.2.4Na2S2O3生成量,G3,Kg/hG3 = =11.82158/234 = 27.46 Kg/h式中M Na2S2O3 Na2S2O3分子量 M H2S H2S分子量4.2.5理论硫回收量G4,kg/h G4 =(G1G2)MS/ M H2S = (147.75-11.82)32/34 =127.93Kg/h式中 MS 硫的分子量 4.2.6理论硫回收率,= G4/ G1 =127.93/147.75100=86.584.2.7生成Na2S2O3消耗纯碱的量G5,Kg/hG5 = G3M Na2CO3/ M Na2S2O3 =27.46106 / 158
38、 = 18.42Kg/h式中 M Na2CO3 碳酸钠的分子量;4.2.8硫泡沫生成量G6,m3/h G6 = G4/S1 =127.93/30 =4.26m3/h式中 S1 硫泡沫中硫含量,此处取S1=30/m3;4.2.9入熔硫釜硫膏量G7 G7 = G4/S2 = 127.93/0.2=639.65Kg/h式中 S2 硫膏含量,此处取S2=20%;4.2.10回收率, = = (10-0.15)/ 10100=98.5%4.2.11硫膏的理论产量 W理论=32V C1/34=3230000100.985/34=278.12Kg/h 式中 W理论硫化氢的原子量 V 焦炉煤气气量,m3 (标
39、)/ h C1 脱硫前半水煤气中硫化氢含量,g/m3 (标) 脱硫效率, 32 硫的原子量4.3热量衡算4.3.1冷却塔热量衡算4.3.1.1冷却塔热负荷,KJm3/ kmolh 式中入冷却塔焦炉煤气量,Kmol/(tNH3); 焦炉煤气平均等压比热容,KJ/( kmol.0C), =30.44 KJ/kmol; 入、出冷却塔焦炉煤气温度; 入、出冷却塔焦炉煤气温含水量,Kg/Kmol. 查得 入,出冷却塔条件下水蒸气的焓,Kcal/Kg, 查表知 代入公式计算得=3000030.44(50-35)+0.784(2591.63-2564.83)=14328336 KJm3/ kmolh4.3.
40、1.2冷却水消耗量,m3 / h 式中 冷却水温升,,此处取。 =14328336/10005=2865.67 m3 / h4.3.2硫泡沫槽热量衡算 4.3.2.1硫泡沫槽热负荷Q2,KJ/hQ2 = Vf PfCf (t3-t4) = 3.4111003.68(80-40)= 552147.2KJ/h式中 Vf 硫泡沫体积,m3,Vf =G6; f 硫泡沫密度,Kg/m3 , f = 1100Kg/m3; Cf 硫泡沫比热容,KJ/(KgK),Cf=3.68 KJ/(KgK);t3 槽中硫泡沫终温,t3 = 800C; t4 槽中硫泡沫初温,t4 = 400C;4.3.2.2蒸汽消耗量,W
41、4,Kg/h W4 = Q2/r1 =552147.21/2202.26 =250.72 Kg/h3式中 r1 0.2MPa蒸汽的汽化热,r1 = 2202.26 KJ/Kg4.3.3熔硫釜热量衡算4.3.3.1熔硫釜热负荷Q3,KJ/釜 Q3=G8Css(t5-t6)+0.5G8sCh +4F(t5-t6) = 1.21.81500(135-15)+ 0.51.2150038.69 + 412.569.2(135-15)= 479085.96 KJ/釜式中G8 每一釜硫膏量,m3/熔硫釜,G8=0.75Vr = 0.751.6, G8= 1.2 m3/釜 Vr 常用熔硫釜全容积为1.6m3
42、0.75 熔硫釜装填系数为75%Cs 硫膏的比热容,KJ/(KgK), Cs =1.8 KJ/(KgK) Ch 硫膏的熔融热,KJ/Kg ,Ch=38.69 KJ/Kg 熔硫釜周围空间的散热系数,KJ/(mh0C),= 12.56 KJ/(mh0C)F 熔硫釜表面积,F = 9.2 m2t5 入釜硫膏终温,oC,t5= 135 0Ct6 釜内加热初温, oC ,t6 = 15 o C 0.5 硫膏中含硫量504 熔1釜所需时间(工作周期),hS 硫膏密度,Kg/m3,S = 1500 Kg/m34.3.3.2 蒸汽消耗量W2,Kg/釜 W2 = Q3 /r2 =479085.96 /2135.
43、27= 224.37 KJ/釜式中 r2 0.4MPa蒸汽汽化热,r2 = 2135.27KJ/Kg 5 主要设备的工艺计算和设备选型5.1主要设备的工艺尺寸5.1.1填料吸收塔设计计算5.1.1.1塔径的确定塔径可以采用泛点速度计算关联图计算2横坐标为:查图得:则 圆整得, 式中 -泛点气速, L 流体质量流速,Kg/(h.L) ,L = LTL G 气体质量流速,Kg/(h.L) , G = G0G 填料比表面积,m2/m3,选用50mm25 mm1.5mm聚丙烯阶梯环,= 114 m2/m3 ; 填料孔隙率,m3/ m3,= 0.927 m3/ m3;L 溶液粘度,mPas,= 0.8
44、mPas ;G 气体密度,Kg/m3,v = 1.05 Kg/m3 ;L 液体密度,Kg/m3,L = 1050 Kg/m3 ; 重力加速度,m/s2 , = 9.81 m/s2 D 吸收塔直径,m ; 0.7-泛点气速系数。5.1.1.2填料层高度计算吸收过程传质系数KG的计算 3KG = Au1.3CNa0.1B-0.01 式中 KG 传质系数,kg/m2hatm;A 经验数,A = 20;u 操作气速,m/s ;CNa 溶液中Na2CO3的含量,CNa= 22.3 g/L;B 吸收过程液气比,B = LT / G0 =591/12000=0.049则KG = Au1.3CNa0.1B-0.01 = 20(0.7)1.3(22.3)0.1(0.049)-0.01 =17.68 kg/m2hatm 吸收过程平均推动力PmPm = (P1-P1*)-(P2-P2*)/ (P1-P1*)/ (P2-P2*) 式中 P1 吸收塔入口气相H2S分压 ,