《中考复习二次函数经典试题选编.doc》由会员分享,可在线阅读,更多相关《中考复习二次函数经典试题选编.doc(8页珍藏版)》请在三一办公上搜索。
1、2011年中考复习二次函数经典试题选编1、如图,设抛物线C1:, C2:,C1与C2的交点为A, B,点A的坐标是,点B的横坐标是2.第24题图 (1)求的值及点B的坐标; (2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG. 记过C2顶点的直线为,且与x轴交于点N. 若过DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标; 若与DHG的边DG相交,求点N的横坐标的取值范围.(本题满分14分)解:(1) 点A在抛物线C1上, 把点A坐标代入得 =1. 抛物线C1的解析式为, 设B(2,b), b4, B(2,4) . (2)如图1, M(1, 5),D(1
2、, 2), 且DHx轴, 点M在DH上,MH=5. 第1题图1过点G作GEDH,垂足为E,由DHG是正三角形,可得EG=, EH=1, ME4. 设N ( x, 0 ), 则 NHx1,由MEGMHN,得 , , , 点N的横坐标为 当点移到与点A重合时,如图2,第1题图2直线与DG交于点G,此时点的横坐标最大过点,作x轴的垂线,垂足分别为点,F,设(x,0), A (2, 4), G (, 2), NQ=,F =, GQ=2, MF =5. NGQNMF, , ,第1题图3图4 . 当点D移到与点B重合时,如图3,直线与DG交于点D,即点B, 此时点N的横坐标最小. B(2, 4), H(2
3、, 0), D(2, 4),设N(x,0), BHNMFN, , , . 点N横坐标的范围为 x且x0. (第2题)2、(本小题满分12分) 在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上. (1) 写出点M的坐标; (2) 当四边形CMQP是以MQ,PC为腰的梯形时. 求t关于x的函数解析式和自变量x的取值范围;(第2题) 当梯形CMQP的两底的长度之比为1:2时,求t的值.解:(1) OABC是平行四边形,ABOC,且AB = OC = 4,A,
4、B在抛物线上,y轴是抛物线的对称轴, A,B的横坐标分别是2和 2, 代入y =+1得, A(2, 2 ),B( 2,2),M(0,2), -2分 (2) 过点Q作QH x轴,设垂足为H, 则HQ = y ,HP = xt ,由HQPOMC,得:, 即: t = x 2y , Q(x,y) 在y = +1上, t = + x 2. -2分当点P与点C重合时,梯形不存在,此时,t = 4,解得x = 1,当Q与B或A重合时,四边形为平行四边形,此时,x = 2x的取值范围是x 1, 且x 2的所有实数. -2分 分两种情况讨论: 1)当CM PQ时,则点P在线段OC上, CMPQ,CM = 2P
5、Q ,点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x = 0 ,t =+ 0 2 = 2. - 2分2)当CM 0),则,1分解得,(舍去)点B的横坐标是2分(2)当,时,得()1分以下分两种情况讨论情况1:设点C在第一象限(如图甲),则点C的横坐标为,OyxCBA(甲)11-1-11分由此,可求得点C的坐标为(,),1分点A的坐标为(,),A,B两点关于原点对称,OyxCBA(乙)11-1-1点B的坐标为(,)将点A的横坐标代入()式右边,计算得,即等于点A的纵坐标;将点B的横坐标代入()式右边,计算得,即等于点B的纵坐标在这种情况下,A,B两点都在抛物线上2分情况2:设点C在第
6、四象限(如图乙),则点C的坐标为(,-),点A的坐标为(,),点B的坐标为(,)经计算,A,B两点都不在这条抛物线上1分(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上所以A,B两点不可能都在这条抛物线上)存在m的值是1或-12分(,因为这条抛物线的对称轴经过点C,所以-1m1当m=1时,点C在x轴上,此时A,B两点都在y轴上因此当m=1时,A,B两点不可能同时在这条抛物线上)9、如图8,已知平面直角坐标系xOy,抛物线yx2bxc过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对
7、称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.图810、在平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为.()若,求此时抛物线顶点的坐标;()将()中的抛物线向下平移,若平移后,在四边形ABEC中满足SBCE = SABC,求此时直线的解析式;()将()中的抛物线作适当的平移,若平移后,在四边形ABEC中满足SBCE = 2SAOC,且顶点恰好落在直线上,求此时抛物线的解析式.解:()当,时,抛物线的解析式为,即. 抛物线顶点的坐标为(1,4) 2分Ey
8、xFBDAOC()将()中的抛物线向下平移,则顶点在对称轴上,有, 抛物线的解析式为() 此时,抛物线与轴的交点为,顶点为 方程的两个根为, 此时,抛物线与轴的交点为,如图,过点作EFCB与轴交于点,连接,则SBCE = SBCF SBCE = SABC, SBCF = SABC 设对称轴与轴交于点,则由EFCB,得 RtEDFRtCOB有 结合题意,解得 点,11、已知抛物线yax2bxc(a0)经过点B(12,0)和C(0,6),对称轴为x2(1)求该抛物线的解析式(2)点D在线段AB上且ADAC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出
9、发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由(3)在(2)的结论下,直线x1上是否存在点M,使MPQ为等腰三角形?若存在,请求出所有点M的坐标;若存在,请说明理由ABCOPQDyx12、如图,抛物线yax2bx1与x轴交于两点A(1,0)、B(1,0),与y轴交于点C(1)求抛物线的解析式;(2)过点B作BDCA与抛物线交于点D,求四边形ACBD的面积;(3)在x轴下方的抛物线上是否存在点M,过M作MNx轴于点N,使以A、M、N为顶点的三角形与BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由ACDOxy(第12题)13、(12分)如图, 已知抛物线与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.