数控机床的产生与发展毕业论文.doc

上传人:laozhun 文档编号:2944262 上传时间:2023-03-05 格式:DOC 页数:17 大小:48KB
返回 下载 相关 举报
数控机床的产生与发展毕业论文.doc_第1页
第1页 / 共17页
数控机床的产生与发展毕业论文.doc_第2页
第2页 / 共17页
数控机床的产生与发展毕业论文.doc_第3页
第3页 / 共17页
数控机床的产生与发展毕业论文.doc_第4页
第4页 / 共17页
数控机床的产生与发展毕业论文.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《数控机床的产生与发展毕业论文.doc》由会员分享,可在线阅读,更多相关《数控机床的产生与发展毕业论文.doc(17页珍藏版)》请在三一办公上搜索。

1、摘 要世界制造业转移,中国正在逐步成为世界加工厂。美国、德国、韩国等国家已经进入工业化发展的高技术密集时代与微电子时代,钢铁、机械、化工等重工业正逐渐向发展中国家转移。我国目前经济发展已经过了发展初期,正处于重化工业发展中期。 未来10年将是中国机械行业发展最佳时期。美国、德国的重化工业发展期延续了18年以上,美国、德国、韩国四国重化工业发展期平均延续了12年,我们估计中国的重化工业发展期将至少延续10年,直到2015年。因此,在未来10年中,随着中国重化工业进程的推进,中国企业规模、产品技术、质量等都将得到大幅提升,国产机械产品国际竞争力增强,逐步替代进口,并加速出口。目前,机械行业中部分子

2、行业如船舶、铁路、集装箱及集装箱起重机制造等已经受益于国际间的产业转移,并将持续受益;电站设备、工程机械、床等将受益于产业转移,加快出口进程一数控机床的产生与发展随着科学技术的发展,数控车床产品日趋复杂化和精密化更新换代也越来越频繁个性化的需求使得生产类型由大批、大量向多品种、小批里生产转换,这样相应地对数控车床产品加工的精度、效率、柔性及自动化等提出了越来越高的要求。数控车床等机械行业传统、典型的加工方式主要有三种: ( 1 )采用普通通用机床的单件、小批生产。由技术工人手工操作控制机床,工艺参数基本由操作工人确定,生产效率低,产品质量不稳定特别是一些复杂的零件加工,需依赖靠模或借助画线和样

3、板等手工操作的方法进行加工,加上效率和精度受到很大限制。 ( 2 )采用通用的机械自动化机床(如凸轮自动车床)的大批童生产以专用凸轮、靠模等实体零件作为加工工艺、控制信息的载体来控制机床的自动运行。若产品更新,则需设计、更换或调整相应的信息载体零件,因此需要较长的准备周期,仅适用于大批量简单零件标准件类的加工。 ( 3 )采用组合专用机床及其自动线的大批量生产一般以系列化的通用部件和专用化夹具、多轴箱体等组成主机本体采用PLC实现自动或半自动控制其加工工艺内容及参数在设备设计时就严格规定使用中一般很难也很少更改这种自动化高效设备需要较大的初期投资和较长的生产准备周期,只有在大批量生产条件下才会

4、产生显著的经济效益。显然二L 述三种加工方式对于当前机械制造业中占机械加工总量70 %至80 的单件小批量生产的零件很难适应。为r 解决上述问题,满足多品种、小批量、复杂、高精度零件的自动化生产要求迫切需要一种通用、灵活、能够适应产品频繁变化的柔性自动化机床以计算机技术为依托,1952 年美国帕森斯(Parsons)公司和麻省理工学院(MIT )合作,研制成功了世界上第一台以数字计算机为基础的数字控制三坐标直线插补铣床,从而使得机械制造业进人了一个崭新时代。第一台数控机床问世以来,随着微电子技术、白动控制技术和精密测量技术的发展,数控技术也得到了迅速发展先后经历了电子份(1952 年)、晶体管

5、(1959年)、小规模集成电路( 1965 年)、大规模集成电路及小型计算机(1970 年)和微处理机或微型计算机(l 974 年)等五代数控系统。前只代数控系统属于专用控制计算机的硬接线(硬件)系统,一般称为NC ( numerical control )20世纪70 年代初期计算机技术的迅速发展使得小型计算机的价格急剧下降,从而出现了以小型计算机代替专用硬件控制计算机的第四代数控系统。这种系统不仅具有更好的经济性,而且许多功能可用编制的专用数控车床程序实现,并可将专用程序储铸在小垫计算机的存储器中构成控制软件。这种数控系统称为CNC( computerized numerical cont

6、rol) 即计算机书毛制系统。20 世纪70 年代中期以微处理机为核心的数控系统MNC 得到了迅速发展。CNC 与MNC 均称为软接线(软件)致控系统。NC 数控系统早已经淘汰,现代教控均采用MNC 数控系统目前通常将现代数控系统称为CNC 。1958 年,北京机床研究所和清华大学等单位率先研制了电子管式开环伺胀驱动的数控机床。由于历史原因,迟迟未能在实用阶段上有所突破。70 年代初期,我国研制的数控装置主要采用晶体管分立元器件,性能不稳定,可靠性差,只有少甘的数控机床(如专用数控铁床及非圆齿轮插齿机等)用于生产。1972 年采用集成数字电路的数控系统在清华大学研制成功,数控技术开始在车、钻、

7、铣、健、磨及齿轮等加工领域得以推广。 从1980 年开始,随着我国改革和开放政策的实施,国内一些单位从日本、美国、前西德等产家引进较先进的数控(制造)技术,并投入批量生产。 与此同时,我国许多单位开始投人经济型数控系统的研制工作。最近,我国在引进、消化和吸收国外先进数控技术的基础上,开发和生产了拥有自主知识产权的数控软硬件。现在国内常用的数控系统有广州数控、华中数控等。二数控机床的分类2.1 按加工工艺方法分类 2.1.1金属切削类数控机床 与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别

8、,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。 在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。 2.1.2特种加工类数控机床

9、除了切削加工数控机床以外,数控技术也大量用于数控电火花线切割机床、数控电火花成型机床、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。 2.1.3常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。 近年来,其它机械设备中也大量采用了数控技术,如数控多坐标测量机、自动绘图机及工业机器人等。 2.2 按控制运动轨迹分类 2.2.1点位控制数控机床 位置的精确定位,在移动和定位过程中不进行任何加工。机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。 这类数

10、控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位数控装置。 2.2.2直线控制数控机床 直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。 直线控制的简易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算是一种直线控制数控机床。 数控镗铣床、加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加

11、工的功能,这类机床应该称为点位/直线控制的数控机床。 2.2.3轮廓控制数控机床 板材加工类轮廓控制数控机床能够对两个或两个以上运动的位移及速度进行连续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅能控制机床移动部件的起点与终点坐标,而且能控制整个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。 常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。 现在计算机数控装置的控制功能

12、均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。 2.3 按驱动装置的特点分类2.3.1 开环控制数控机床 这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。 开环

13、控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。 2.3.2 闭环控制数控机床 接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为

14、闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。 闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。 2.3.3 半闭环控制数控机床 半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),

15、通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。 半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。 2.3.4 混合控制数控机床 将以上三类数控机床的特点结合起来,就形成了混合控制数控机床。混合控制数控机床特别适用于大型或重型数控机床,因为大型或重型数控机床需要较高的进给速度与相当高的精度,

16、其传动链惯量与力矩大,如果只采用全闭环控制,机床传动链和工作台全部置于控制闭环中,闭环调试比较复杂。混合控制系统又分为两种形式: (1)开环补偿型。它的基本控制选用步进电动机的开环伺服机构,另外附加一个校正电路。用装在工作台的直线位移测量元件的反馈信号校正机械系统的误差。 (2)半闭环补偿型。它是用半闭环控制方式取得高精度控制,再用装在工作台上的直线位移测量元件实现全闭环修正,以获得高速度与高精度的统一。其中A是速度测量元件(如测速发电机),B是角度测量元件,C是直线位移测量元件。三 数控车的工艺与工装削数控车床加工工艺与普通车床的加工工艺类似,但由于数控车床是一次装夹,连续自动加工完成所有车

17、削工序,因而应注意以下几个方面。3.1. 合理选择切削用量切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、扭矩),在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。 一 制订切削用量时考虑的因素 切削加工生产率 在切削加工中,金属切除率与切削用量三要素ap、f、v均保持线性关系,即其中任一参数增大一倍,都可使生产率提高一倍。然而由于刀具寿命的制约,当任一参数增大时,其它二参数必须减小。因此,在制订切削用量时,三要素获得最佳组合,此时的高生产率才是合理

18、的。 刀具寿命 切削用量三要素对刀具寿命影响的大小,按顺序为v、f、ap。因此,从保证合理的刀具寿命出发,在确定切削用量时,首先应采用尽可能大的背吃刀量;然后再选用大的进给量;最后求出切削速度。 加工表面粗糙度 精加工时,增大进给量将增大加工表面粗糙度值。因此,它是精加工时抑制生产率提高的主要因素。二 刀具寿命的选择原则切削用量与刀具寿命有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。选择刀具寿命时可考虑如下几点:根据刀具复杂程度、制造

19、和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率限制了整个车间的生产率的提高时,该工序的刀具寿命要选得低些;当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。三 切削用量制定的步骤背吃刀量的选择进给量的选择切削速度的确定校验

20、机床功率四 提高切削用量的途径 采用切削性能更好的新型刀具材料; 在保证工件机械性能的前提下,改善工件材料加工性; 改善冷却润滑条件; 改进刀具结构,提高刀具制造质量。3.2. 合理选择刀具1) 粗车时,要选强度高、耐用度好的刀具,以便满足粗车时大背吃刀量、大进给量的要求。2) 精车时,要选精度高、耐用度好的刀具,以保证加工精度的要求。3) 为减少换刀时间和方便对刀,应尽量采用机夹刀和机夹刀片。3.3. 合理选择夹具1) 尽量选用通用夹具装夹工件,避免采用专用夹具;2) 零件定位基准重合,以减少定位误差。3.4. 确定加工路线加工路线是指数控机床加工过程中,刀具相对零件的运动轨迹和方向。1)

21、应能保证加工精度和表面粗糙要求;2) 应尽量缩短加工路线,减少刀具空行程时间。3.5. 加工路线与加工余量的联系目前,在数控车床还未达到普及使用的条件下,一般应把毛坯上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则需注意程序的灵活安排。3.6. 夹具安装要点目前液压卡盘和液压夹紧油缸的连接是靠拉杆实现的,液压卡盘夹紧要点如下:首先用搬手卸下液压油缸上的螺帽,卸下拉管,并从主轴后端抽出,再用搬手卸下卡盘固定螺钉,即可卸下卡盘。四 程序首句妙用与控制尺寸精度的技巧4.1、程序G00的技巧目前我们所接触到的教科书及数控车削方面的技术书籍,程序首句均为建立工件

22、坐标系,即以G50 X Z作为程序首句。根据该指令,可设定一个坐标系,使刀具的某一点在此坐标系中的坐标值为(X Z)(本文工件坐标系原点均设定在工件右端面)。采用这种方法编写程序,对刀后,必须将刀移动到G50设定的既定位置方能进行加工,找准该位置的过程如下。1. 对刀后,装夹好工件毛坯;2. 主轴正转,手轮基准刀平工件右端面A;3. Z轴不动,沿X轴释放刀具至C点,输入G50 Z0,电脑记忆该点;4. 程序录入方式,输入G01 W-8 F50,将工件车削出一台阶;5. X轴不动,沿Z轴释放刀具至C点,停车测量车削出的工件台阶直径,输入G50 X,电脑记忆该点;6. 程序录入方式下,输入G00

23、X Z,刀具运行至编程指定的程序原点,再输入G50 X Z,电脑记忆该程序原点。上述步骤中,步骤6即刀具定位在XZ处至关重要,否则,工件坐标系就会被修改,无法正常加工工件。有过加工经验的人都知道,上述将刀具定位到XZ处的过程繁琐,一旦出现意外,X或Z轴无伺服,跟踪出错,断电等情况发生,系统只能重启,重启后系统失去对G50设定的工件坐标值的记忆,“复位、回零运行”不再起作用,需重新将刀具运行至XZ位置并重设G50。如果是批量生产,加工完一件后,回G50起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系。鉴于上述程序首句使用G50建立工件坐标系的种种弊端,笔者想办法将工件坐标系固定在机

24、床上,将程序首句G50 XZ改为G00 X Z后,问题迎刃而过程的前五步,即完成步骤1、2、3、4、5后,将刀具运行至安全位置,调出程序,按自动运行即可。即使发生断电等意外情况,重启系统后,在编辑方式下将光标移至能安全加工又不影响工件加工进程的程序段,按自动运行方式继续加工即可。上述程序首句用 G00代替G50的实质是将工件坐标系固定在机床上,不再囿于G50 X Z程序原点的限制,不改变工件坐标系,操作简单,可靠性强,收到了意想不到的效果。中国金属加工在线4.2、控制尺寸精度的技巧4.2.1. 修改刀补值保证尺寸精度由于第一次对刀误差或者其他原因造成工件误差超出工件公差,不能满足加工要求时,可

25、通过修改刀补使工件达到要求尺寸,保证径向尺寸方法如下:a. 绝对坐标输入法根据“大减小,小加大”的原则,在刀补001004处修改。如用2号切断刀切槽时工件尺寸大了0.1mm,而002处刀补显示是X3.8,则可输入X3.7,减少2号刀补。b. 相对坐标法如上例,002刀补处输入U-0.1,亦可收到同样的效果。同理,对于轴向尺寸的控制亦如此类推。如用1号外圆刀加工某处轴段,尺寸长了0.1mm,可在001刀补处输入W0.1。4.2.2. 半精加工消除丝杆间隙影响保证尺寸精度对于大部分数控车床来说,使用较长时间后,由于丝杆间隙的影响,加工出的工件尺寸经常出现不稳定的现象。这时,我们可在粗加工之后,进行

26、一次半精加工消除丝杆间隙的影响。如用1号刀G71粗加工外圆之后,可在001刀补处输入U0.3,调用G70精车一次,停车测量后,再在001刀补处输入U-0.3,再次调用G70精车一次。经过此番半精车,消除了丝杆间隙的影响,保证了尺寸精度的稳定。4.2.3. 程序编制保证尺寸精度a. 绝对编程保证尺寸精度编程有绝对编程和相对编程。相对编程是指在加工轮廓曲线上,各线段的终点位置以该线段起点为坐标原点而确定的坐标系。也就是说,相对编程的坐标原点经常在变换,连续位移时必然产生累积误差,绝对编程是在加工的全过程中,均有即坐标原点,故累积误差较相对编程小。数控车削工件时,工件径向尺寸的精度一般比轴向尺寸精度

27、高,故在编写程序时,径向尺寸最好采用绝对编程,考虑到加工及编写程序的方便,轴向尺寸常采用相对编程,但对于重要的轴向尺寸,最好采用绝对编程。b. 数值换算保证尺寸精度很多情况下,图样上的尺寸基准与编程所需的尺寸基准不一致,故应先将图样上的基准尺寸换算为编程坐标系中的尺寸。如图2b中,除尺寸13.06mm外,其余均属直接按图2a标注尺寸经换算后而得到的编程尺寸。其中, 29.95mm、16mm及60.07mm三个尺寸为分别取两极限尺寸平均值后得到的编程尺寸。4.2.4. 修改程序和刀补控制尺寸数控加工中,我们经常碰到这样一种现象:程序自动运行后,停车测量,发现工件尺寸达不到要求,尺寸变化无规律。如

28、用1号外圆刀加工图3所示工件,经粗加工和半精加工后停车测量,各轴段径向尺寸如下:30.06mm、23.03mm及16.02mm。对此,笔者采用修改程序和刀补的方法进行补救,方法如下:a. 修改程序原程序中的X30不变,X23改为X23.03,X16改为X16.04,这样一来,各轴段均有超出名义尺寸的统一公差0.06mm;b. 改刀补在1号刀刀补001处输入U-0.06。经过上述程序和刀补双管齐下的修改后,再调用精车程序,工件尺寸一般都能得到有效的保证。数控车削加工是基于数控程序的自动化加工方式,实际加工中,操作者只有具备较强的程序指令运用能力和丰富的实践技能,方能编制出高质量的加工程序,加工出

29、高质量的工件。五G90的简化利用普通的G90粗车固定循环是由两个G00和两个G01组成,在退出工件时也是G01慢速退刀,这样在加工较大台阶面时退刀时间太长,大大的影响了加工的效率。解决方案有两种:一使起刀点尽量靠近工件,减少空走刀行程,缩短进给路线,节省在加工过程中的执行时间。二是改进G90加快退刀速度。1. 在加工中如果有台阶面相差较大的地零件,我们将起刀点尽量靠近工件。利用宏程序和G90进行编程。程序如下:O0001; G50 X100. Z0.; 建立G50坐标系 M03 S400; 主轴正转转速S400 G00 Z2.; 快速移动到Z2的位置 X93.; 快速移动到X93的位置 #1=

30、86.; #1代表X轴的起始值为86。 N10 G90 X#1 Z-50. F0.3; 外圆固定循环G00 X#1; G00快速移动X轴起刀点位置 #1=#1-4.; #1(X)轴坐标依次减小4mm IF#1GE50.GOTO10; 如果#1的值大于等于50就转移到10号程序G00 X100.; 快速移动到X100的位置 Z0.; 快速移动到Z0的位置 M30; 程序结束并回到程序第一条语此程序每刀车削4mm直到车到50 当然90车到50刚好能被4整除,如果小外圆尺寸是51,这就得改变一下程序, 将IF #1GE50. GOTO10;改为IF #1GE51. GOTO10;再在程序后面加一个G

31、90 X51. Z-50. F0.3;这样就可以在最后一刀将51.车削出来。 2. 用G90加工图1-2,从90的外圆车到50需要多次退刀和多次进刀,虽然上面G90加宏程序可以改变G90固定循环的起刀点,但其退刀量还是过大,我们可以将指令改为类似于G71的循环指令。这指令可以完成多次切削循环,而且退刀量很小。首先在参数中设置调用宏程序的G代码,按非模态调用G65的方法调用宏程序。在参数(No.6050到No.6069)中设置调用宏程序(09010到09019)的G代码号(从1到9999),调用用户宏程序的方法与G65相同。 如我们要设计的G代码为G80,设置参数No.6050=80,G80就是

32、一个新功能的指令,由G80调用宏程序09010,就可以调用由宏程序编制而成的特殊的加工循环,相当于G65P9010。宏程序调用指令:G65P0910X(U) Z(W)DEF;参数的含义是:X(U)/Z(W) 外圆车削的终点坐标;D每次切削的深度(半径值指定);E每次切削后的退刀量(如果不指定则自动指定为0.5mm);F切削的进给速度。G80调用户宏程序本体:O0910;#31=#5041; 保存X值初值#32=#5042; 保存Z值初值IF#8NE#0GOTO01; 如果参数E赋值转移到01号程序段#8=0.5; 参数E缺失时每次切削后的退刀量为0.5mmN01 IF#24EQ#0GOTO02

33、; 如果#24未赋值则转移到02号程序段#1=#24; X值绝对值指令GOTO03; N02 IF#21EQ#0GOTO09; 如果X轴未赋值则转移到09号程序段报警#1=#31+#21; X轴绝对值坐标NO3 IF#26EQ#0GOTO04; 如果#26未赋值则转移到04号程序段#2=#26; Z值绝对值指令GOTO05; 无条件转移到05号程序段N04 IF#23EQ#0GOTO09; 如果Z轴未赋值则转移到09号程序段报警#2=#32+#23; Z轴绝对值坐标N05 IF#7EQ#0GOTO09; 如果切削深度D未赋值则转移到09号程序报警IF#9NE#0GOTO06; 如果参数F赋值则

34、转移到06号程序段#9=#4109; 参数F未赋值则用前面的值N06 #30=#31; #30=X轴初值WHILE#30GT#1DO1; 当X轴初值大于切削目标终点坐标时执行DO1和END1间的程序段#30=#30-2*#7; 下一个切削点的X坐标IF#30GT#1GOTO07; 如果X的坐标值大于切削终点坐标值转移到07#30=#1; 下一个切削点的X坐标是切削目标终点坐标值N07 G00 X#30; 切削循环G01 Z#2 F#9;U-2*#8;G00 Z#32; 切削循环结束END1;G00 X#31; 返回起始点GOTO10;N09 #3000=1(ERROR); 赋值错误报警N10

35、M99; 以上图为例将新建的G80代码程序利用在加工中,加工程序如下:O0002;G50 X200. Z0.; 建立坐标M03 S300; 主轴正转S300G00 Z2.; 快速移动到Z2的位置X93.; 快速移动到X93的位置 G80 X50. Z-50. D2. E1. F0.3; 调用G65P9010加工G00 X200.; 快速移动到X200位置Z0.; 移动到Z0的位置 M30; 程序结束并回到程序起点注意的是自定义的G80调用的程序中,不能再用自定义的G80代码调用宏程序,这种程序中的自定义的G80代码被处理为普通G代码而且只能用于车削直外圆,而不能车削锥度外圆。二,多头螺纹的宏程

36、序加工:在数控车削加工中,多头螺纹的加工是一个难点,而常用的螺纹加工指令无法将其加工出来。在数控机床加工螺纹常用G32、G92和G76这三条指令。而多头螺纹的加工方法有两种:一个是通过改变切削螺纹初始位置;第二是改变切削螺纹的初始角来实现。加工下图的螺纹,分别用改变螺纹的初试位置和改变初试角度来加工。在这里我们将改变初试位置可以用G92指令加宏程序来实现加工,而改变初试角度用G32加宏程序来进行编程。加工图为1-43.加工程序如下:3.1用 G92加工多头螺纹,程序如下:待添加的隐藏文字内容2O0003;G50 X100. Z100.; 建立坐标系M03 S100; 主轴正转S100rminM

37、O8; 打开切削液G00 X42. Z2.; G00快速移动到X42 Z2的循环起点位置#1=0.; 轴向分线初始值#2=4.; 轴向分线总次数#4=37.8; 螺纹切削最终深度WHILE #1LE#2 DO1; 轴向分线共三次#3=39.9; 螺纹切削的第一刀WHILE #3GE#4 DO2; 螺纹切削深度的次数G00 Z#1+2.; 轴向分线执行G92 X#3 Z-45. F6.; 螺纹车削循环#3=#3-0.1; 螺纹X轴的余量递减END2; 循环2结束#1=#1+2.; 轴向分线变量递增END1; 循环1结束M09; 切削液关G00 X100. Z100.; G00快速移动到程序坐标系

38、M30; 程序结束并回到程序起始点 3.2用G32加工多头螺纹,程序如下:O0004;G50 X100. Z100.; G50建立坐标系M03 S100; 主轴正转转速100rminM08; 切削液开G00 Z2.; G00快速移动到Z2的位置#1=0.; 多头螺纹的第一个角度为0#2=3; 多头螺纹的头数为3头#4=37.8; 螺纹的最终深度N10 G00 X43.; G00快速移动到车削螺纹X轴的起点#3=39.9; 螺纹车削X轴的第一刀的尺寸N20 G00X#3; G00移动到螺纹加工的深度G32 Z-45. Q#1 F6. 螺纹车削G00 X43.; G00移动到X轴安全位置Z2. 移

39、动到Z轴安全位置#3=#3-0.1; 螺纹车削X轴的余量递增减IF #3GE#4 GOTO20; 螺纹车削循环#1=#1+360000#2; 螺纹角度递增IF #1LT360000 GOTO10; 螺纹角度循环M09; 切削液关G00 X100. Z100. G00快速移动到X轴和Z轴坐标点M30; 程序结束并回到起点在G92和G32中,将控制螺纹头数的是#2,在车削双头 四头 或六头等的螺纹,仅仅只需改变#2和导程,就可以加工任何一种多头螺纹。结论制定符合中国国情的总体发展战略,确立与国际接轨的发展道路,对21世纪我国数控技术与产业的发展至关重要。本文在对数控技术和产业发展趋势的分析,对我国

40、数控领域存在的问题进行研究的基础上,对21世纪我国数控技术和产业的发展途径进行了探讨,提出了以科技创新为先导,以商品化为主干,以管理和营销为重点,以技术支持和服务为后盾,坚持可持续发展道路的总体发展战略。在此基础上,研究了发展新型数控系统、数控功能部件、数控机床整机等的具体技术途径。 我们衷心希望,我国科技界、产业界和教育界通力合作,把握好知识经济给我们带来的难得机遇,迎接竞争全球化带来的严峻挑战,为在21世纪使我国数控技术和产业走向世界的前列,使我国经济继续保持强劲的发展势头而共同努力奋斗。参考文献1机械科学与技术, 杨皖苏,严鸿和.1997,26(4):162.中国机械工程, 陈玉祥1998,9(5):143中国机械工程, 周延佑.1998,9(5): 5244. 王军主编.数控加工工艺M.武汉大学出版社,2009,1.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 教育教学 > 大学


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号