外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc

上传人:laozhun 文档编号:2948876 上传时间:2023-03-05 格式:DOC 页数:18 大小:229KB
返回 下载 相关 举报
外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc_第1页
第1页 / 共18页
外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc_第2页
第2页 / 共18页
外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc_第3页
第3页 / 共18页
外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc_第4页
第4页 / 共18页
外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc》由会员分享,可在线阅读,更多相关《外文翻译下沉指数最小翘曲、注塑件热塑性田口优化方法.doc(18页珍藏版)》请在三一办公上搜索。

1、 南京大学毕业设计(论文)外文资料翻译系部: 机械工程系 专 业: 机械工程及自动化 姓 名: 学 号: 外文出处: 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语:译文基本能表达原文思想,语句较流畅,条理较清晰,专业用语翻译基本准确,基本符合中文习惯,整体翻译质量一般。 签名: 年 月 日附件1:外文资料翻译译文 下沉指数最小翘曲、注塑件热塑性田口优化方法 大加那利岛拉斯帕尔马斯大学,机械工程学院,西班牙摘要:在过去几年里快速成型和快速模具技术已被广泛开发利用。在本文中,使用电芯作为核心程序分析塑料注塑模具。通过差分系统快速成型制造外壳模型。主要目的是分析电铸镍壳力学特点,研究

2、相关的金相组织,硬度,内部压力等不同方面,由这些特征参数来生产电铸设备的外壳。最后一个核心是检验注塑模具。关键词:电镀,电铸,微观结构,镍文章大纲:1 、导言2 、制造过程的注塑模具3 、获得电壳:设备4 、获得硬度5 、金相结构6 、内部压力7 、检验注塑模具8 、结论正文:1 、导言现代工业面临巨大的挑战,其中的最重要的挑战是怎样解决提供给消费者更好的产品,更多的种类和更新换代(更新设计)的问题 。出于这个原因,现代工业必定产生越来越激烈的竞争性。毫无疑问,结合时间变量和质量变量是不容易的,因为他们经常彼此互为条件,先进的生产系统将允许该组合以更加有效可行的方式进行,例如,如果是观察注塑系

3、统的演变,我们得出的结论是,事实上一个新产品在市场上具有较好的质量它需要越来越少的时间。快速模具制造技术是在这一领域中可以改善设计和制造注入部分的技术进步。快速模具制造技术基本上是一个中小型系列的收集程序,在很短的时间内在可接受的精度水平基础上让我们获得模具的塑料部件。其应用不仅仅在决策领域的塑料注射件1 -3,然而这是真的。本文包含了很广泛的研究路线,并试图在那里学习,定义,分析,测试,提出在工业水平方面的可行性,从核心的注塑模具制造获取电铸镍壳,同时作为一个初始模型的原型在一个FDM设备上的快速成型。不得不说的是,先进的电铸技术应用在无数的行业,这一研究工作调查到什么程度,并根据这些参数,

4、使用这种技术生产快速模具在技术上是可行的。所有取得准确的和系统化的使用方式,并提出了工作方法。2 、制造过程的注塑模具薄镍外壳的核心是电铸,获得一个充满epoxic金属树脂的一体化的核心板块4模具(图1 )允许直接制造注射型多用标本,因为它们确定了新英格兰大学英文国际标准化组织3167标准。这样做的目的是确定力学性能的材料收集代表行业。图 1 注塑模具制造与电的核心该阶段取得的核心4 ,根据该方法研究了这项工作,如下: (a)CAD系统的理想对象。(b)示范制造业的快速成型设备(频分多路系统) 。所使用的材料将是一个ABS塑料。(c)电铸镍壳的模式,已事先涂有导电涂料(它必须有导电性) 。(d

5、)无外壳的模式。(e)制作的核心是背面外壳的环氧树脂抗高温与铜管的制冷。注塑有两个腔的具,其中一个是电核心和其他直接加工的移动板。因此,在同一工艺条件下,同时注入两个标准腔技术制造,获得相同的工件。3 、获得电壳:设备电5 6是电解质时电流的化学变化。电解所形成的直流电有两个电极,阳极和阴极。当电流流经电路,在离子溶液中转化为原子。电镀液用于这项工作是由氨基磺酸镍 7 8 400毫升/升,氯化镍( 10克/升) ,硼酸( 50克/升) , Allbrit SLA( 30毫升/ l )和Allbrite 703 ( 2毫升/升) 。选择这一成分,主要是由于我们考虑注塑模具程序是玻璃纤维。氨基磺酸

6、镍使我们能够获得一个可以接受水平的内部压力(测试了不同的工艺条件结果,而不是最佳工艺条件为约2兆帕最高为50兆帕)。然而,这种内部压力,是由toluenesulfonamide衍生物和甲醛水溶液使用的Allbrite添加剂的结果,添加剂也增加了壳的阻力。 Allbrite 703是一种可生物降解的水溶液作用剂。氯化镍,有利于统一解决金属分布在阴极,提高导电性的问题。硼酸作为pH值的缓冲区。该设备用于制造壳的测试如下: 聚丙烯: 600毫米 400毫米 500毫米大小。三个800瓦聚四氟乙烯电阻器机械搅拌系统的阴极。 系统的循环和过滤用的泵和聚丙烯过滤器。充电整流器。最大强度在连续50个A和连续

7、电流电压介于0和16V篮钛镍阳极(镍硫回合电解镍) ,纯度99 以上。气体注系统一旦电流密度( 1至22 A/dm2 ) ,温度( 35至55 C )和pH值已经确定,执行参数,测试的进程部分就不可改变。4 、获得硬度电壳硬度的测试一直保持的相当高和稳定结果。如图 2。可以看到:电流密度值2.5到A/dm2 ,硬度值介于540到580高压,pH值为4 0.2和温度为45摄氏度,如果pH值减少到3.5和温度为55 ,硬度为520以上,高压低于560 。这一测试使常规组成不同于其他氨基磺酸镍,允许其运营更加广泛;然而,这种operativity将是一定的取决于其他因素,如内部压力,因为它的变异可能

8、改变PH值,电流密度和温度等。另一方面,传统的硬度氨基磺酸高压200-250之间,远低于取得的一个试验结果。这是必须考虑到的,对于一个注塑模具,硬度可以接受的起点300高压。注塑模具中最常见的材料,有改善钢( 290高压) ,整体钢淬火( 520-595高压) , casehardened钢铁( 760-800高压)等,以这样一种方式,可以看到,注塑模具硬度水平的镍是壳内的高范围的材料。因为这是一个负责内部压力的塑料注射液,这种方式与环氧树脂灌浆将遵循它,相反对低韧性的壳补偿,这就是为什么它是必定尽可能的外壳厚度均匀,并没有重要的原因,如 腐蚀图 2 硬度随电流密度 pH值为4 0.2 ,温度

9、为45摄氏度5 、金相结构为了分析金相结构的电流密度和温度主要变化。在正面横向部分(垂直沉积)对样品进行了分析。为了方便地封装在树脂、抛光、铭刻,在不同阶段的混合乙酸和硝酸。该蚀刻间隔为15 、 25 、 40和50之后再次抛光,为了在金相显微镜下观察奥林巴斯PME3-ADL 3.3/10。必须要说的是,这一条规定显示了图片之后的评论,用于制造该模型的壳在FDM快速成型机里溶化的塑料材料(澳大利亚统计局)巩固和解决了该阶层。后来在每一个层,挤出的模具都留下一个大约0.15毫米直径横向和纵向的线程。因此,在表面可以看到细线表明头部的机器。这些线路将作为参考信息解决镍的重复性问题。重复性的模型将作

10、为一个基本要素来评估注塑模具表面纹理。表1 测试系列系列pH温度(C) 电流密度 (A/dm2) 14.20.2552.2223.90.2455.5634.00.24510.0044.00.24522.22图3说明该系列第一蚀刻表面的样本.它显示了流道起点的频率复用机,这就是说,有一个很好的重复性。它不能仍然注意到四舍五入结构。在图 4 .系列2 ,经过第二次,可以看到一条线的流道的方式与以前的相比不太清楚。在图 5 .系列3,虽然第二次蚀刻开始出现圆形晶结构是非常困难的。此外,最黑暗的部分表明蚀刻不足的进程和组成。图 3 系列1 ( 150 ) ,蚀刻1图 4 系列2 ( 300 ) ,蚀刻

11、2 图 5 系列3 ( 300 ) ,蚀刻2 这种现象表明,在低电流密度和高温条件下工作,得到更小的晶粒尺寸和壳重现性好,就是所需的足够的应用程序。如果分析横向平面进行的沉积,可以在所有测试样品和条件增长的结构层(图6 ) ,牺牲一个低延展性取得令人满意的高机械阻力。最重要的是添加剂的使用情况,氨基磺酸镍镀液的添加剂通常创建一个纤维和非层状结构9。这个问题表明,在任何情况下改变润湿剂,由于该层结构的决定因素是这种结构的应力减速器( Allbrite SLA) 。另一方面,它也是测试的层状结构不同厚度层中的电流密度。图 6 横向平面系列2 ( 600 ) ,蚀刻2 6 、内部压力壳的一个主要特点

12、是应该有其应用,如插入是要有一个低水平的内部压力。测试不同的温度和电流密度,所采取的措施取决于阴极弯曲张力计法。 A钢测试控制使用侧固定和其他自由度固定(160毫米长, 12.7毫米宽和0.3毫米厚度)。金属沉积只有在控制了机械拉伸力(拉伸或压应力),才能计算内部压力。弹性的角度来看,斯托尼模型10应用,假定镍基质厚度,对部分钢材产生足够小( 3微米)的影响。在所有的测试情况下,一个能够接受的应用程序在内部压力在50兆帕的极端条件下和2兆帕的最佳条件下产生。得出的结论是,内部压力在不同的工作条件和参数没有明显变化的条件下没有太大变化。7 、检验注塑模具试验已进行了各种代表性的热塑性材料,如聚丙

13、烯,高密度聚乙烯和PC材料,并进行了注射部件性能的分析,如尺寸,重量,阻力,刚度和柔性。对壳的力学性能进行了拉伸破坏性测试和分析。大约500个注射液在其余的条件下,进行了更多的检验。总体而言,为分析一种材料,重要的是注意到行为标本中的核心和那些加工腔之间的差异。然而在分析光弹注入标本(图7)有人注意到不同的国家之间的张力存在两种不同类型的标本,是由于不同的模腔热传递和刚度。这种差异解释了柔性的变化更加突出的部分晶体材料,如聚乙烯和聚酰胺6 。图 7 分析光弹注入标本有人注意到一个较低的柔性标本在的高密度聚乙烯分析测试管在镍核心的情况下,量化30 左右。如尼龙6这个值也接近50 。8 、结论经过

14、连续试验,注塑模具在不同的条件下检查的氨基磺酸镍镀液使用添加剂,这就是说塑性好,硬度好和摩擦力好的层状结构,已取得的力学性能是可以接受的。机械缺陷的镍壳将部分取代环氧树脂为核心的注塑模具,使注入的一系列中型塑料零部件达到可接受的质量水平。参考文献1 A.E.W. Rennie, C.E. Bocking and G.R. Bennet.电铸电极快速成型轴的电火花加工.学者材料,(2001年). 186-196页.2 P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou.模具的快速发展使用镍电铸和立体光刻工艺.学者材料,(2001年).286-2

15、94页.3 J. Hart, A. Watson, Electroforming:一种基本上未扩大,但关键行业, Interfinish 96 , 14世界大会上,英国伯明翰, 1996年. 4 M. Monzn .阿根廷布宜诺斯艾利斯国际塑料杂志Modernos , 84 (2002).第557页.5 L.F. Hamilton. 希尔的化学及分析.(1989年). 6 E. Julve. Electrodeposicin德金属. 2000年( EJS ). 7 A. Watson.镍氨基磺酸盐解决方案.镍发展研究所(1989年).8 A. Watson.补充氨基磺酸盐镍解决方案.镍发展研究

16、所(1989年).9 J. Dini.电镀材料科学的涂膜及衬底.诺伊斯出版(1993年).10 J.W. Judy.磁性微与多晶硅屈.信息科学技术部,加州大学伯克利分校, 1994年. 附件2:外文原文(复印件)A technical note on the characterization of electroformed nickel shells for their application to injection molds aUniversidad of Las Palmas of Gran Canaria, Departamento of Ingenieria Mecanica,

17、Spain AbstractThe techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection molds is analysed. Shells are obtained from models manufactured through rapid prototyping using th

18、e FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses and possible failures, by relating these features to the parameters of production of the shells wit

19、h an electroforming equipment. Finally a core was tested in an injection mold. Keywords: Electroplating; Electroforming; Microstructure; Nickel Article Outline1. Introduction 2. Manufacturing process of an injection mold 3. Obtaining an electroformed shell: the equipment 4. Obtained hardness 5. Meta

20、llographic structure 6. Internal stresses 7. Test of the injection mold 8. Conclusions References1. IntroductionOne of the most important challenges with which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this

21、reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going

22、 to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher lev

23、els of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that

24、 are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their application is not only included in the field of making plastic injected pieces 1, 2 and 3, however, it is true that it is where they have develop

25、ed more and where they find the highest output. This paper is included within a wider research line where it attempts to study, define, analyze, test and propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking

26、 as an initial model a prototype made in a FDM rapid prototyping equipment. It also would have to say beforehand that the electroforming technique is not something new because its applications in the industry are countless 3, but this research work has tried to investigate to what extent and under w

27、hich parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use and proposing a working method. 2. Manufacturing process of an injection moldThe core is formed by a thin nickel shell that is obtained through the

28、electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate 4 This mold (Fig. 1) permits the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this

29、 specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with the properties obtained by conventional tools. Fig. 1.Manufactured injection mold with electroformed core.The stages to obtain a core 4, according

30、 to the methodology researched in this work, are the following: (a) Design in CAD system of the desired object.(b) Model manufacturing in a rapid prototyping equipment (FDM system). The material used will be an ABS plastic.(c) Manufacturing of a nickel electroformed shell starting from the previous

31、model that has been coated with a conductive paint beforehand (it must have electrical conductivity).(d) Removal of the shell from the model.(e) Production of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper t

32、ubes.The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was obtained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different tech

33、nologies. 3. Obtaining an electroformed shell: the equipmentElectrodeposition 5 and 6 is an electrochemical process in which a chemical change has its origin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrode

34、s, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the circuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit la

35、yer. The plating bath used in this work is formed by nickel sulfamate 7 and 8 at a concentration of 400ml/l, nickel chloride (10g/l), boric acid (50g/l), Allbrite SLA (30cc/l) and Allbrite 703 (2cc/l). The selection of this composition is mainly due to the type of application we intend, that is to s

36、ay, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the shell (the tests gave results, for different process conditions, not superior to 50MPa and for optimum conditions around 2MPa). Nevertheless, suc

37、h level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesulfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smalle

38、r grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride, in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the met

39、allic distribution in the cathode. The boric acid acts as a pH buffer. The equipment used to manufacture the nickel shells tested has been as follows: Polypropylene tank: 600mm400mm500mm in size. Three teflon resistors, each one with 800W. Mechanical stirring system of the cathode. System for recirc

40、ulation and filtration of the bath formed by a pump and a polypropylene filter. Charging rectifier. Maximum intensity in continuous 50A and continuous current voltage between 0 and 16V. Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%. Gases aspiration syst

41、em.Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current density (between 1 and 22A/dm2), the temperature (between 35 and 55C) and the pH, partially modifying the bath composition. 4. Obtained hardnessOne

42、 of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at rather high and stable values. In Fig. 2, it can be observed the way in which for current density values between 2.5 and 22A/dm2, the hardness valu

43、es range from 540 and 580HV, at pH 40.2 and with a temperature of 45C. If the pH of the bath is reduced at 3.5 and the temperature is 55C those values are above 520HV and below 560HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to

44、operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its variability may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate

45、 bath is between 200250HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness is acceptable starting from 300HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290HV), steel f

46、or integral hardening (520595HV), casehardened steel (760800HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells would be within the mediumhigh range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such

47、 a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important fail

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号