《基于图像处理的车牌的自动识别课件.pptx》由会员分享,可在线阅读,更多相关《基于图像处理的车牌的自动识别课件.pptx(28页珍藏版)》请在三一办公上搜索。
1、基于图像处理的车牌的自动识别,图像识别典型案例,识别原理:牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌
2、照号码输出。,基于图像处理的车牌的自动识别,基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。,(1)牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。,导入原始图像,图像预处理增强效果图像,边缘提取,车牌定位,对图像开闭运算,流程图:,(2)牌照字符分割:按
3、左右宽度切割出字符分析垂直投影找到每个字符中心位置去掉车牌的框架计算水平投影进行车牌水平校正完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。,(3)牌照字符识别:字符依次分析显示误差最小的图片名字分析之差最小的图片是哪张与数据库的图片相减切割出的字符送入库中字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的
4、字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。,原始图像,图像的灰度化,对原始图像进行开运算得到图像背景图像,灰度图像与背景图像作减法,对图像进行增强处理,将图像二值化取得最佳阈值,二值图像是指整幅图像画面内仅黑、白二值的图像。在实际的车牌处理系统中,进行图像二值变换的关键是要确定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。阈值处理的操作过程是先由用户指定或通过
5、算法生成一个阈值,如果图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为0或255,否则灰度值设置为255或0。,边缘检测:,两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果,是图像分割、纹理特征提取和形状特征提取等图像分析的基础。为了对有意义的边缘点进行分类,与这个点相联系的灰度级必须比在这一点的背景上变换更有效,我们通过门限方法来决定一个值是否有效。所以,如果一个点的二维一阶导数比指定的门限大,我们就定义图像中的次点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。经过一阶的导数的边缘检测,所求的一阶导数高于某个阈值,则确定该点为边缘
6、点,这样会导致检测的边缘点太多。可以通过求梯度局部最大值对应的点,并认定为边缘点,去除非局部最大值,可以检测出精确的边缘。一阶导数的局部最大值对应二阶导数的零交叉点,这样通过找图像强度的二阶导数的零交叉点就能找到精确边缘点。,像边缘提取,对得到图像作开操作进行滤波,数学形态非线性滤波,可以用于抑制噪声,进行特征提取、边缘检测、图像分割等图像处理问题。腐蚀是一种消除边界点的过程,结果是使目标缩小,孔洞增大,因而可有效的消除孤立噪声点;膨胀是将与目标物体接触的所有背景点合并到物体中的过程,结果是使目标增大,孔洞缩小,可填补目标物体中的空洞,形成连通域。先腐蚀后膨胀的过程称为开运算,它具有消除细小物
7、体,并在纤细处分离物体和平滑较大物体边界的作用;先膨胀后腐蚀的过程称为闭运算,具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。对图像做了开运算和闭运算,闭运算可以使图像的轮廓线更为光滑,它通常用来消掉狭窄的间断和长细的鸿沟,消除小的孔洞,并弥补轮廓线中的断裂。,闭运算的图像,开运算的图像,对二值图像进行区域提取,并计算区域特征参数,a.对图像每个区域进行标记,然后计算每个区域的图像特征参数:区域中心位置、最小包含矩形、面积。,计算出包含所标记的区域的最小宽和高,并根据先验知识,比较谁的宽高比更接近实际车牌宽高比,将更接近的提取并显示出来。,灰度子图和二值子图,对水平投影进行峰谷分析,对水平投影进行峰谷分析,计算出车牌上边框、车牌字符投影、车牌下边框的波形峰上升点、峰下降点、峰宽、谷宽、峰间距离、峰中心位置参数。,计算车牌旋转角度,a.车牌倾斜的原因导致投影效果峰股谷不明显,在这里需要做车牌矫正处理。这里采取的线性拟合的方法,计算出车牌上边或下边图像值为1的点拟合直线与水平X轴的夹角。,去水平(上下)边框,获取字符高度,.通过以上水平投影、垂直投影分析计算,获得了车牌字符高度、字符顶行与尾行、字符宽度、每个字符的中心位置,为提取分割字符具备了条件,将计算计算获取的字符图像与样本库进行匹配,自动识别出字符代码:,