《函数图象的教学反思.docx》由会员分享,可在线阅读,更多相关《函数图象的教学反思.docx(3页珍藏版)》请在三一办公上搜索。
1、函数图象的教学反思 函数图象的教学反思 广厚中心学校 石立军 本节内容的知识目标是探索具体问题中的数量关系和变化规律,运用函数的图象的知识进行描述和解决;能力目标是能选择、处理数学信息,并做出合理的推断或大胆的猜测,能结合具体情境发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效解决问题;能初步具有数形结合、分段函数的数学思想;学会与人合作,并能与他人交流思维的过程和结果。情感目标是乐于接受生活中的数学信息,积极参与对数学问题的讨论,敢于发表自己的观点,能从交流中获益。 本节的教学重点是通过创设探索情境,体现数学与现实生活的联系,进一步培养学生从函数的角度解决问题。考虑到函数教学较
2、难进行之处在于学生第一次接触函数相关内容,其抽象性不易理解与掌握,所以采取的教学策略是从学生感兴趣的欣赏图片引出探讨对象,容易引起学生兴趣,从而进入探索过程。课堂组织形式采用引导探究模式,充分调动学生积极性, 引导学生作出其图像。但是分段函数毕竟对学生提出了较高层次的要求,学生做函数图像比较困难, 函数关系式的得出相对来说困难不大,因为在本章的开头已经多次遇到过类似的问题情景,函数图像可由教师直接给出:作出图象如下: 分析图象:1、横纵轴分别代表的含义; 2、起点; 3、交点:;4、转折点; 5、图象上各点坐标的实际意义。 作为对分段函数的初步认识,对图象中的各个“点”分析透彻有助于对图形的理
3、解。在函数解析式及图像得出的情况下,展开如下讨论: 1、“两车相遇”在图象上如何表示? 2、如何在图象上看出函数值的大小? 通过对问题一较为仔细和深入的探讨,学生对函数的解析式及图像有了更深层次的理解。这个问题一的设置与教学,基本上适合学生的认知情况,但难度较大,其探讨比较适合层次比较高的学生,或者教学可设置为课前学生预习,尝试作图象,这样在课堂教学时可降低难度几学生思考的时间。 解题点拨:,我们并不知道x 和 y是什么函数关系。将这些数值所对应的点在坐标系中作出,我们发现,这些点大致位于一条直线上,可知 x 和 y 近似地符合一次函数关系。我们可以用一条直线去尽可能地与这些点相贴近,求出近似
4、的函数关系式。解答:利用几何画板过其中两点作直线。可以看到,其他点也在这条直线上。求出这条直线所表达的解析式,则我们得到了反映x和y的函数关系式。 在解决本题的最后,引导学生做了一个反思:在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,作图进行观察和计算,从而确定接近的函数关系式来研究这些实际问题。在解这种与函数有关的题后,有一点很重要就是及时进行回顾与反思,这样将有助于学生函数思想的升华。 函数另一重要之处在于对函数图像的理解与应用,所以在问题二之后安排了阅读图像回答问题的问题三。阅读函数图象,并根据你获得的信息回答问题: 折线OAB表示某个实际问题的函
5、数图象,请你编写一道符合该图象意义的应用题; 根据你给出的应用题分别指出x轴、y轴所表示的意义,并写出A、B两点的坐标; 对于函数图像的理解与应用,是本章内容的重点与难点。从图像获取信息也是学习函数之后学生应该具有的能力与技巧。探究思路:1、从图象获取直观认识,由折线特征结合生活实际构造应用背景;2、注意折线特点,OA、OB段“坡度”的差异;3、起点、终点的含义,在应用背景中的体现;4、转折点对应用背景的影响;5、注意所编应用题的合理性。此题为开放题型,引导学生根据以往学习经验进行创造性学习,教会学生如何识图,用图,将图象反应于文字。 最后对本堂课内容作一个课堂小结:1、函数可以用来解决很多生活的实际问题;2、如何理解分段函数及其图象;3、观察图象,从图象获取信息;4、创造性自编题如何体现函数思想。 函数教学历来是初中数学教学的一个重点和难点,如何突破,本节课作了一个尝试。所选用的三个问题均是精心挑选和设计的学生较易接受的题目背景,这样在教学中学生容易产生亲切感,有利于教学活动的开展。但是对于比较难的题型或知识,应该事先布置给学生作预习,这样将有助于课堂教学和学生更深层次的理解。