《1431等腰三角形教学设计.docx》由会员分享,可在线阅读,更多相关《1431等腰三角形教学设计.docx(12页珍藏版)》请在三一办公上搜索。
1、1431等腰三角形教学设计北京市花家地西里中学 刘新 1课时教学设计 课题名称:等腰三角形 教材版本:人教版义务教育课程标准实验教科书第14章的第14.3.1 节 教师姓名: 学校: 教学背景分析 本课时教学内容的地位和作用 本节是在探索了两个三角形全等的条件及轴对称性质的基础上进行的,进一步认识特殊的轴对称图形等腰三角形,主要探索等腰三角形“等边对等角”和“等腰三角形的三线合一”的性质。本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是证明角相等、线段相等及两直线互相垂直的重要依据,具有承上启下的重要作用。 学情分析 学生小学接触过等腰三角形,对等腰三角形有初步的认识,
2、前段时间探究过两个三角形全等的条件及轴对称的性质,比较习惯用三角形全等证明线段相等和角相等,但刚开始接触用符号表示推理,将文字命题转换为符号语言还不熟练。 教学目标 知识与技能 经历观察实验、猜想证明,掌握等腰三角形的性质,会运用性质进行证明和计算。 过程与方法 1 经历观察等腰三角形的对称性,发展形象思维。 2 经历观察实验、猜想证明,发展合情推理能力和演绎推理能力。 3 通过运用等腰三角形的性质解决问题,发展应用意识。 情感态度与价值观 经历同学间的合作与交流,体会在解决问题过程中与他人合作的益处。 教学重点和难点 (一)教学重点 等腰三角形性质的发现、证明及应用。 (二)教学难点 等腰三
3、角形三线合一的发现、证明及应用。 教学方式和教学手段 教学方式 启发引导、探究合作相结合。 教学手段 多媒体辅助教学 等腰三角形 第 1 页 共 6 页 北京市花家地西里中学 刘新 学生学习方式 1动手实践:培养学生的观察能力、分析能力。 2自主探索:调动学生思维的积极性,使学生自主地获取知识。 3合作交流:学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知。 学具准备 硬纸、剪刀。 教学流程安排 活动流程 活动1 动手操作,得出概念 活动2 观察实验,猜出性质 活动3 推理证明,论证性质 活动4 运用性质,解决问题 活动5 拓展探究,发展提高 活动6 梳理反思,布置作业 教学过
4、程 问题与情境 师生活动 设计意图 时间 活动内容和目的 由折纸、剪纸,得到等腰三角形的有关概念,感知其对称性。 通过探索,归纳等腰三角形的性质定理。 从理性上认识等腰三角形性质定理的正确性。 在解题过程中加深对性质的理解,学会性质定理的运用。 通过探究,更深入的了解等腰三角形的对称性。 回顾反思,从知识、方法、情感态度等方面谈收获。 活动1 动手操作,得出概念 问题 教师用ppt演示问题。 如图,把一张长方形的纸按学生动手折纸,剪纸,观察,回图中虚线对折,并减去阴影部分,答问题。 再把它展开,得到一个什么图形? 教师与学生一起动手折纸,剪标好字母并演示,提出问题。 C 纸, A B 学生举手
5、叙述定义。 教师引出课题,板书定义并画你能归纳出等腰三角形的定图,提出问题。 义吗? 学生举例。 你能举出生活中等腰三角形教师引导、鼓励,用ppt演示图的实例吗? 片,演示介绍腰、底、顶角、底角。 本次活动中,教师重点关注学生是否积极参加到数学活动中来。 学生动手实践、观察、归纳、举例,重新认识等腰三角形,调动学生的主观能动性,激发好奇心和求知欲。 学生剪三角形的过程,从动态角度展示了等腰三角形的形成,并保留了中间的折痕,为后面证明性质添加辅助线作铺垫。 4分钟 等腰三角形 第 2 页 共 6 页 北京市花家地西里中学 刘新 活动2 观察实验,猜出性质 问题 教师用ppt演示问题。 活动1中剪
6、出的等腰三角学生动手折纸,观察,找出重合形是轴对称图形吗? 的线段和角,填写表格。 把剪出的等腰三角形ABC教师用ppt演示问题。 沿折痕对折,找出其中重合的线 段和角,填写表格。 学生独立观察思考后小组讨论,交流合作。 重合的线段 重合的角 猜想性质1,学生比较容易,若 证明有困难,教师可启发学生利用折 痕添加辅助线。 猜想性质2,学生会有困难,教你能猜一猜等腰三角形有什么性质吗?你能试着对你的猜想进同角度引导启发: 1引导学生仔细分析表格中的重合行证明吗? 线段和角: AB=AC,定义阐述,不必重复; AD=AD,公共边,也不必阐述; B=C,刚刚猜过; 还剩BD=DC,说明AD是ABC的
7、什 么线? BAD=CAD,说明AD是ABC的 什么线? ADB=ADC,等于多少度?说明 AD是ABC的什么线? 这三条线段有什么关系? 2引导学生回答等腰三角形的对称 轴是什么?学生会有不同回答:顶角 平分线所在直线、底边上高或中线所 在直线,教师追问:你们说的是同一 条线吗?从而引出性质2。 3引导学生对性质1做出三种不同 证明,三种方法添加的三条辅助线有 什么关系? 学生充分讨论后,小组代表阐述 猜想过程。 本次活动中,教师重点关注: 学生数学语言的规范性; 学生的归纳能否全面; 学生在交流中表现出来的参与 意识和发表个人见解的勇气。 等腰三角形 第 3 页 共 6 页 学生通过探 索
8、发现,发展创新 思维能力,改变学 生的学习方式,使 学生经历了一个 观察、实验、探究、 归纳、推理、证明 的认识图形的全 过程,把推理证明 作为学生观察、实 验、探究得出结论14之后的自然延续,分钟 完成好由实验几 何到论证几何的 过渡。 北京市花家地西里中学 刘新 活动3 推理证明,论证性质 问题 性质1的条件和结论分别是什么?用数学符号如何表达条件和结论?口述证明过程? 受性质1的证明的启发,你能证明性质2吗? 你能把性质2分解为三个命题吗? 如果已知ABC中,AB=AC,AD平分BAC,你能推出什么结论? 教师用ppt演示问题。 学生分析性质1的条件和结论,并转换成数学符号,口述证明。
9、教师引导学生用多种方法证明,纠正和补充学生发言,ppt演示不同证明过程,板书性质1及使用格式。 教师用ppt演示问题。 学生在分析性质2的条件和结论转换数学符号时会再次遇到困难,教师引导设问和,这样学生会比较顺利的把性质2的条件和结论转换成三种数学符号形式,并运用全等分别证明。 教师板书性质2及使用格式,强调等腰AB=AC是大前提,完善性质2分解的三个命题的文字叙述,归纳性质2的三个作用:证明角相等、线段相等及两直线互相垂直。 本次活动中,教师重点关注: 学生数学符号语言的规范性; 学生发表个人见解的勇气。 培养学生语言转换能力,增强理性认识,体会证明的必要性,发展演绎推理能力。 8分钟 活动
10、4 运用性质,解决问题 问题 教师用ppt依次演示问题等腰三角形一个底角为75,。 它另外两个角为_ _; 学生独立思考解决问题。 等腰三角形一个角为70,它教师评判并引导学生归纳性质1的另外两个角为_; 的两个作用: 等腰三角形一个角为110, 求角的度数; 它的另外两个角为_ _。 将线段间的相等关系转化为如图,ABC是等腰直角三角角之间的相等关系。 形,AD是底 边BC上的高,标出B、C、 BAD、DAC的度数,图中有哪些相 等线段? ABDC地震过后,河沿村中学的同 学们为了检测教室的房梁是否水 平,在教具等腰直角三角板的斜边等腰三角形 第 4 页 共 6 页 问题的安排遵循由浅入深,
11、循序渐进的原则,深化巩固等腰三角形的两条性质,提高运用所学知识解决问题的能力,发展应用意识。 12分钟 北京市花家地西里中学 刘新 中点拴一条线绳,线绳另一端挂一个铅锤,把这个三角板的斜边紧贴房梁,结果线绳经过直角定点,同学们确信房梁水平。他们的判断对吗?为什么? 教师用ppt演示例题1。 学生独立思考后小组讨论。 例题 教师参与讨论,认真听取学生分例1的目的1已知:如图,在ABC中,AB=AC,析,引导学生找出角之间的关系,为是巩固和应用 点D在AC上,且BD=BC=AD. 了分析解答的简捷明了,引导学生设“等边对等角”。求:ABC各角的度数 A=x ,板书解答过程。 列方程解决几何 计算题
12、是常用方A 教师用ppt演示例题2。 法,学生要学会将 学生独立思考证明,他们可能还几何的定理、等式 转化为代数方程. D习惯于用全等三角形。 教师引导运用“三线合一”可简 C便证明。 B2已知:如图,点D、E在ABC本次活动中,教师重点关注: 的边BC上,AB=AC,AD=AE. 学生能否正确应用等腰三角形例2的目的求证:BD=CE. 的性质解决问题; 是巩固和应用“三A 学生是否注意到等腰三角形的线合一”。 问题可能有多种情况,需分类讨论; 学生是否注意到等腰三角形的 顶角可能是锐角,也可能是钝角,但B C E D 底角一定是锐角; 学生应用所学知识的应用意识。 活动5 拓展探究,发展提高
13、 教科书(P142) “讨论”栏目,学生看书小组讨论,得到两底角激发学生探利用等腰三角形的轴对称性,能发平分线、两腰的中线、两腰的高等。 索精神,启迪发散现等腰三角形中许多相等的线段教师启发学生课后证明。 学生思维。 或角,除了书中提到的,你还能发现等腰三角形中哪些线段相等? 活动6 梳理反思,布置作业 谈谈你本节课的收获。 布置作业: 阅读本节课内容 课本P143练习3, P1491、4、7题 课本P15012题 学生畅所欲言,从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题。 教师引导学生从知识、方法、情感态度等方面去归纳,用ppt演示
14、本节教学目标及小结。 使学生对所学知识有一个完整而深刻系统的认识。 培养学生养成及时梳理反思的习惯。 4分钟 3分钟 等腰三角形 第 5 页 共 6 页 学生组装完整的实验室制取氧气的装置 北京市花家地西里中学 刘新 板书设计 1431 等腰三角形 一、定义:有两条边相等的三角形叫做等腰三角形 二、性质1:等边对等角 A使用格式:在ABC中, AB=AC, B=C. 性质2:三线合一 BDC使用格式:在ABC中, AB=AC,ADBC, BD=DC, BAD=CAD. AB=AC,BD=DC, ADBC, BAD=CAD. AB=AC, BAD=CAD, ADBC,BD=DC. 三、例题1 A解:AB=AC, BD=BC=AD, ABC=C=BDC, DA=ABD, CB 设A=x,则 BDC=A+ABD=2x, ABC=C=BDC=2x 在ABC中, A+ABC+C=x+2x+2x=180, 解得x=36 在ABC中,A=35, ABC=C=72 等腰三角形 第 6 页 共 6 页