3线性电阻电路分析.docx

上传人:牧羊曲112 文档编号:3147842 上传时间:2023-03-11 格式:DOCX 页数:50 大小:54.91KB
返回 下载 相关 举报
3线性电阻电路分析.docx_第1页
第1页 / 共50页
3线性电阻电路分析.docx_第2页
第2页 / 共50页
3线性电阻电路分析.docx_第3页
第3页 / 共50页
3线性电阻电路分析.docx_第4页
第4页 / 共50页
3线性电阻电路分析.docx_第5页
第5页 / 共50页
亲,该文档总共50页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《3线性电阻电路分析.docx》由会员分享,可在线阅读,更多相关《3线性电阻电路分析.docx(50页珍藏版)》请在三一办公上搜索。

1、3线性电阻电路分析3线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程

2、。 2l 电阻单口网络 VCR相同 N1 N2 等效 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络内部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口内部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路

3、中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1 1.线性电阻的串联 两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 u=u1+u2+u3+un =R1i1+R2i2+R3i3+Rnin =(R1+R2+R3+Rn)i =Ri其中 unR=Rkik=1上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电

4、阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。 求得端口的VCR方程为 i=i1+i2+i3+in =G1u1+G2u2+G3u3+Gnun =(G1+G2+G3+Gn)u =Gu上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 2 R=R1R2R1+R23.线性电阻的串并联由若干个线性电阻的串联和并联所形成的单口网络,就端口特性而言,等效于一个线性二端电阻,其等效电阻值可以根据具体电路,多次利用电阻串联和并联单口的等效电阻公式(2l)和(22)计算出来。 例2-l

5、 电路如图2-3a)所示。已知R1=6W, R2=15W,R3=R4=5W。试求ab两端和cd两端的等效电阻。 图23 为求Rab,在ab两端外加电压源,根据各电阻中的电流电压是否相同来判断电阻的串联或并联。 5 15 10 5 RR1510R=W=6WR=R+R=10WR+R15+10 6 12 6 2343434234234Rab=R1+R234=6W+6W=12WRab=R1+R2(R3+R4)15(5+5)=6W+W=12WR2+R3+R415+5+5 3 15 显然,cd两点间的等效电阻为 Rcd=5 5 R3(R2+R4)5(15+5)=W=4WR3+R2+R45+15+5二、独立

6、电源的串联和并联 根据独立电源的VCR方程和 KCL、KVL方程可得到以下公式: 1.n个独立电压源的串联单口网络,如图2-4(a)所示,就端口特性而言,等效于一个独立电压源,其电压等于各电压源电压的代数和 n uS=uSk(2-4) k=1图24 其中与uS参考方向相同的电压源uSk取正号,相反则取负号。 2. n个独立电流源的并联单口网络,如图2-5(a)所示,就端口特性而言,等效于一独立电流源,其电流等于各电流源电流的代数和与iS参考方向相同的电流源iSk取正号,相反则取负号。 图iS=iSkk=1n(2-5)图图25 4 就电路模型而言,两个电压完全相同的电压源才能并联;两个电流完全相

7、同的电流源才能串联,否则将违反 KCL、KVL和独立电源的定义。发生这种情况的原因往往是模型设置不当,而需要修改电路模型。 例2-2 图2-6(a)电路中。已知uS1=10V, uS2=20V,uS3=5V,R1=2W,R2=4W, R3=6W和RL=3W。求电阻RL的电流和电压。 图26解: 为求电阻RL的电压和电流,可将三个串联的电压源等效为一个电压源,其电压为 uS=uS2-uS1+uS3=20V-10V+5V=15V将三个串联的电阻等效为一个电阻,其电阻为 R=R2+R1+R3=4W+2W+6W=12W由图(b)电路可求得电阻RL的电流和电压分别为: i=uS15V=1A u=RLi=

8、3W1A=3VR+RL12W+3W例2-3 电路如图2-7(a)所示。已知iS1=10A,iS2=5A,iS3=1A,G1=1S,G2=2S和G3=3S,求电流i1和i3。 图iS=iS1-iS2+iS3=10A-5A+1A=6A图27解:为求电流i1和i3,可将三个并联的电流源等效为一个电流源,其电流为 i1=i3=G11iS=6A=1AG1+G2+G31+2+3-G3-3iS=6A=-3AG1+G2+G31+2+35 得到图(b)所示电路,用分流公式求得: 三、含独立电源的电阻单口网络 一般来说,由一些独立电源和一些线性电阻元件组成的线性电阻单口网络,就端口特性而言,可以等效为一个线性电阻

9、和电压源的串联,或者等效为一个线性电阻和电流源的并联。可以通过计算端口VCR方程,得到相应的等效电路 例2-4 图2-8(a)单口网络中。已知uS=6V,iS=2A,R1=2W,R2=3W。求单口网络的VCR方程,并画出单口的等效电路。 图28 解:在端口外加电流源i,写出端口电压的表达式 u=uS+R1(iS+i)+R2i =(R1+R2)i+uS+R1iS =Roi+uoc其中: Ro=R1+R2=2W+3W=5Wuoc=uS+R1iS=6V+2W2A=10V根据上式所得到的单口等效电路是电阻Ro和电压源uOC的串联,如图(b)所示。 例25 图2-9(a)单口网络中,已知uS=5V,iS

10、=4A,G1=2S, G2=3S。求单口网络的VCR方程,并画出单口的等效电路。 5S 1图6 图29 解:在端口外加电压源u,用2b方程写出端口电流的表达式为 i=-iS+G2u+G1(u-uS) =(G1+G2)u-(iS+G1uS) =Gou-isc其中: Go=G1+G2=2S+3S=5Sisc=iS+G1uS=4A+2S5V=14A根据上式所得到的单口等效电路是电导Go和电流源iSC的并联,如图(b)所示。 例2-6 求图210(a)和(c)所示单口的VCR方程,并画出单口的等效电路。 图2-10 解:图(a)所示单口的VCR方程为 u=uS-i根据电压源的定义,该单口网络的等效电路

11、是一个电压为uS的电压源,如图(b)所示。 图2-10 图(c)所示单口VCR方程为根据电流源的定义,该单口网络的等效电路i=iS-u是一个电流为iS的电流源,如图(d)所示。 四、含源线性电阻单口两种等效电路的等效变换 含源线性电阻单口可能存在两种形式的VCR方程,即 u=Roi+uoc (2-6)i=Gou-isc (2-7)7 相应的两种等效电路,如图(a)和(c)所示。 式(2-7)改写为 u=Roi+uoc (2-6)11u=i+isc (2-8) i=Gou-isc (2-7)GoGo令式(26)和(28)对应系数相等,可求得等效条件为 ooRo=GR uoc=Roisc 或 is

12、c=oc1u单口网络两种等效电路的等效变换可用下图表示。 例27 用电源等效变换求图2-12(a)单口网络的等效电路。 将电压源与电阻的串联等效变换为电流源与电阻的 将电流源与电阻的并联变换为电压源与电阻的串联图2-12 8 五、用单口等效电路简化电路分析 假如图2-13(a)所示电路N能分解为图2-13(b)所示的两个单口网络的连接,就可以用单口的等效电路来代替单口Nl(或N2),使电路的支路数和结点数减少,从而简化电路分析。 图图2-13 由于单口与其等效电路的VCR方程完全相同,这种代替不会改变电路其余部分N2(或 Nl)的电压和电流。当仅需求解电路某一部分的电压和电流时,常用这种方法来

13、简化电路分析。现举例加以说明。 例28 求图2-14(a)电路中电流i。 图2-14 解:可用电阻串并联公式化简电路。具体计算步骤如下: 4(3+1)W=2W4+3+1Rbd=先求出3W和1W电阻串联再与4W电阻并联的等效电阻Rbd 得到图(b)电路。再求出6W和2W电阻串联再与8W并联的等效电阻Rad 9 Rad=8(6+2)W=4W8+6+2得到图(c)电路。由此求得电流 10 32V i=2A12W+4W例29 求图2-15(a)电路中电流i。 图2-15 解:用电源等效变换公式,将电压源与电阻串联等效变换为电流源与电导并联,得到图(b)电路。用分流公式求得 图i=1S(5A+5A)=4

14、A(1+1+0.5)S例210 求图2-16(a)电路中电压u。 图2-16解:(1)将1A电流源与5W电阻的串联等效为1A电流源。20V电压源与10W电阻并联等效为20V电压源,得到图(b)电路。 (2) 再将电流源与电阻并联等效为一个电压源与电阻串联,得到图(c)所示单回路电路。由此求得 u=(-3+20-8)V2W=2V(2+3+4)W2-2 电阻的星形联接与三角形联接 电阻的星形联接:将三个电阻的一端连在一起,另一端分别与外电路的三个结点相连,就构成星形联接,又称为Y形联接,如图2-17(a)所示。 11 电阻的三角形联接:将三个电阻首尾相连,形成一个三角形,三角形的三个顶点分别与外电

15、路的三个结点相连,就构成三角形联接,又称为形联接,如图(b)所示。 图2-17电阻的星形联接和电阻的三角形联接构成一个电阻三端网络。一般来说,电阻三端网络的端口特性,可用联系这些电压和电流关系的两个代数方程来表征。 对于电阻星形联接的三端网络,外加两个电流源i1和i2。用2b方程u1=R1i1+R3(i1+i2)u2=R2i2+R3(i1+i2)求出端口电压u1和u2的表达式为: 整理得到 对电阻三角形联接的三端网络,外加两个电流源i1和i2,将电流源与u1=(R1+R3)i1+R3i2u2=R3i1+(R2+R3)i2(2-11)i12=u1=R31i1-R31i12=R31(i1-i12)

16、R31i1-R23i2 R12+R23+R31u2=R23i12+R23i2=R23(i2+i12)电阻的并联单口等效变换为一个电压源与电阻的串联单口,得到图(b)电路,由此得到 12 R31(R12+R23)R23R31i1+i2R12+R23+R31R12+R23+R31 (2-12)R23R31R23(R12+R31)u2=i1+i2R12+R23+R31R12+R23+R31u1=将i12表达式代入上两式,得到 式(211)和(212)分别表示电阻星形联接和三角形联接网络的 VCR方程。 如果要求电阻星形联接和三角形联接等效,则要求以上两个VCR方程的对应系数分别相等,即: R31(R

17、12+R23)R12+R23+R31R23R31R3=(2-13)R12+R23+R31R23(R12+R31)R2+R3=R12+R23+R31R1+R3=由此解得 R31R12R1=R12+R23+R31R12R23R2= (2-14)R12+R23+R31R23R31R3=R12+R23+R31电阻三角形联接等效变换为电阻星形联接的公式为 Ri=接于i端两电阻之乘积D形三电阻之和R1=R2=R3=RU=当R12= R23= R31= RD时,有 1RD3由式(214)可解得: 电阻星形联接等效变换为电阻三角形联接的公式为 U形电阻两两乘积之和Rmn=R12=R1R2+R2R3+R3R11

18、3 不与mn端相连的电阻R3R1R2+R2R3+R3R1R1RR+R2R3+R3R1R31=12R2R23=(2-17)(2-18)当R1= R2= R3= RY时,有 在复杂的电阻网络中,利用电阻星形联接与电阻三角形联接网络的等R12=R23=R31=RD=3RU(2-19)效变换,可以简化电路分析。 例211 求图2-20(a)电路中电流i。 图2-20 再用电阻串联和并联公式,求出连接到电压源两端单口的等效电阻 R=1.5W+(0.6+1.4)(1+1)W=2.5W0.6+1.4+1+1最后求得 i=10V10V=4AR2.5W23 网孔分析法及回路分析法 在支路电流法一节中已述及,由独

19、立电压源和线性电阻构成的电路,可以b个支路电流变量来建立电路方程。在b个支路电流中,只有一部分电流是独立电流变量,另一部分电流则可由这些独立电流来确定。若用独立电流变量来建立电路方程,则可进一步减少电路方程数。 对于具有b条支路和n个结点的平面连通电路来说,它的(b-n+1)个网孔电流就是一组独立电流变量。用网孔电流作变量建立的电路方程,称为网孔方程。求解网孔方程得到网孔电流后,用KCL方程可求出全部支路电流,再用VCR方程可求出全部支路电压。 一、网孔电流 若将电压源和电阻串联作为一条支路时,该电路共有6条支路和4个结点。对、结点写出KCL方程。 i+i-i=0 i=i+i-i-i+i=0

20、i=i+i i-i-i=0 i=i-i134413125512236623 14 支路电流i4、i5和i6可以用另外三个支路电流i1、i2和i3的线性组合来表示。 电流i4、i5和i6是非独立电流,它们由独立电流i1、i2和i3的线性组合确定。这种线性组合的关系,可以设想为电流i1、i2和i3沿每个网孔边界闭合流动而形成,如图中箭头所示。这种在网孔内闭合流动的电流,称为网孔电流。它是一组能确定全部支路电流的独立电流变量。对于具有b条支路和n个结点的平面连通电路来说,共有(b-n+1)个网孔电流。 二、网孔方程 以图示网孔电流方向为绕行方向,写出三个网孔的KVL方程分别为: R1i1+R5i5+

21、R4i4=uS1 R2i2+R5i5+R6i6=uS2R3i3-R6i6+R4i4=-uS3 将以下各式代入上式,消去i4、i5和i6后可以得到: i4=i1+i3 i5=i1+i2 i6=i2-i3 (R1+R4+R5)i1+R5i2+R4i3=uS1R5i1+(R2+R5+R6)i2-R6i3=uS2网孔方程 R4i1-R6i2+(R3+R4+R6)i3=-uS3将网孔方程写成一般形式: R11i1+R12i2+R13i3=uS11 Ri+Ri+Ri=u211222233S22 R31i1+R32i2+R33i3=uS33 其中R11, R22和R33称为网孔自电阻,它们分别是各网孔内全部

22、电阻的总和。例如R11= R1+ R4+ R5, R22= R2+ R5+ R6, R33= R3+ R4+ R6。 15 Rkj(kj)称为网孔k与网孔j的互电阻,它们是两网孔公共电阻的正值或负值。当两网孔电流以相同方向流过公共电阻时取正号,例如R12= R21=R5,R13=R31=R4。当两网孔电流以相反方向流过公共电阻时取负号,例如R23= R32=-R6。 uS11、uS22、uS33分别为各网孔中全部电压源电压升的代数和。绕行方向由极到+极的电压源取正号;反之则取负号。例如uS11=uS1,uS22=uS2,uS33=-uS3。 由独立电压源和线性电阻构成电路的网孔方程很有规律。可

23、理解为各网孔电流在某网孔全部电阻上产生电压降的代数和,等于该网孔全部电压源电压升的代数和。根据以上总结的规律和对电路图的观察,就能直接列出网孔方程。具有m个网孔的平面电路,其网孔方程的一般形式为 R21i1+R22i2+.+R2mim=uS22(2-25).Rm1i1+Rm2i2+.+Rmmim=uSmm三、网孔分析法计算举例 网孔分析法的计算步骤如下: 1.在电路图上标明网孔电流及其参考方向。若全部网孔电流均选为顺时针(或反时针)方向,则网孔方程的全部互电阻项均取负号。 2.用观察电路图的方法直接列出各网孔方程。 3.求解网孔方程,得到各网孔电流。 4.假设支路电流的参考方向。根据支路电流与

24、网孔电流的线性组合关系,求得各支路电流。 5.用VCR方程,求得各支路电压。 例212 用网孔分析法求图2-22电路各支路电流。 R11i1+R12i2+.+R1mim=uS11 16 图222解:选定两个网孔电流i1和i2的参考方向,如图所示。用观察电路的方法直接列出网孔方程: (1W+1W)i1-(1W)i2=5V-1Wi1+(1W+2W)i2=-10V整理为 2i1-i2=5A-i1+3i2=-10A解得: 52-10i1=-1i2=22-1-1-1535A=1A-10-A15-1A=5A=-3A-1533各支路电流分别为i1=1A,i2=-3A,i3=i1-i2=4A。 例213 用网

25、孔分析法求图223电路各支路电流。 图2-23 解:选定各网孔电流的参考方向,如图所示。用观察法列出网孔方程: (2W+1W+2W)i1-(2W)i2-(1W)i3=6V-18V-(2W)i1+(2W+6W+3W)i2-(6W)i3=18V-12V-(1W)i1-(6W)i2+(3W+6W+1W)i3=25V-6V整理为 5i1-2i2-i3=-12A-2i1+11i2-6i3=6A-i1-6i2+10i3=19A解得: i1=-1A i2=2A i3=3Ai4=i3-i1=4A i5=i1-i2=-3A i6=i3-i2=1A四、含独立电流源电路的网孔方程 当电路中含有独立电流源时,不能用式

26、(225)来建立含电流源网孔的网孔方程。若有电阻与电流源并联单口,则可先等效变换为电压源和电阻17 串联单口,将电路变为仅由电压源和电阻构成的电路,再用式(225)建立网孔方程。 若电路中的电流源没有电阻与之并联,则应增加电流源电压作变量来建立这些网孔的网孔方程。此时,由于增加了电压变量,需补充电流源电流与网孔电流关系的方程。 R11i1+R12i2+.+R1mim=uS11R21i1+R22i2+.+R2mim=uS22(2-25).Rm1i1+Rm2i2+.+Rmmim=uSmm综上所述,对于由独立电压源,独立电流源和电阻构成的电路来说,其网孔方程的一般形式应改为以下形式 R11i1+R1

27、2i2+.+R1mim+uiS11=uS11 R21i1+R22i2+.+R2mim+uiS22=uS22 . Rm1i1+Rm2i2+.+Rmmim+uiSmm=uSmm 其中u表示第k个网孔的全部电流源电压的代数和,其电压的参考方iskk向与该网孔电流参考方向相同的取正号,相反则取负号。由于变量的增加,需要补充这些电流源(i) 与相关网孔电流(i, i) 关系的方程,其一般形SKij式为 iSk=iiij其中,当电流源(i)参考方向与网孔电流参考方向(i或i)相同时取SKij正号,相反则取负号。 例214 用网孔分析法求图224电路的支路电流。 图2-24 解:设电流源电压为u,考虑了电压

28、u的网孔方程为: i1+2i2=-5A(1W)i1+u=5V (2W)i2-u=-10Vi-i=7A12补充方程 i1-i2=7A求解以上方程得到: i1=3A i2=-4A u=2V18 例215 用网孔分析法求解图225电路的网孔电流。 19 图2-25 解:当电流源出现在电路外围边界上时,该网孔电流等于电流源电流,成为已知量,此例中为i3=2A。此时不必列出此网孔的网孔方程。 只需计入1A电流源电压u,列出两个网孔方程和一个补充方程: (1W)i1-(1W)i3+u=20V(5W+3W)i2-(3W)i3-u=0i1-i2=1Ai1+8i2=28Ai1-i2=1A代入i3=2A,整理后得

29、到: 解得i1=4A, i2=3A和i3=2A。 五、回路分析法 与网孔分析法相似,也可用(b-n+1)个独立回路电流作变量,来建立回路方程。由于回路电流的选择有较大灵活性,当电路存在m个电流源时,若能选择每个电流源电流作为一个回路电流,就可以少列写m个回路方程。网孔分析法只适用平面电路,而回路分析法却是普遍适用的方法。 例216 用回路分析法重解图225电路。 图2-26 解:为了减少联立方程数目,选择回路电流的原则是:每个电流源支路只流过一个回路电流。 若选择图226所示的三个回路电流i, i和i,则i=2A, i=1A成13434为已知量。 只需列出i1回路的方程 (5W+3W+1W)i

30、1-(1W+3W)i3-(5W+3W)i4=20V20 代入i=2A, i=1A解得: 3420V+8V+8V=4A i2=i1-i4=3A5W+3W+1Wi5=i1-i3=2A i6=i1-i3-i4=1Ai1=24 结点分析法及割集分析法 与用独立电流变量来建立电路方程相类似,也可用独立电压变量来建立电路方程。在全部支路电压中,只有一部分电压是独立电压变量,另一部分电压则可由这些独立电压根据KVL方程来确定。若用独立电压变量来建立电路方程,也可使电路方程数目减少。对于具有n个结点的连通电路来说,它的(n-1)个结点对第n个结点的电压,就是一组独立电压变量。用这些结点电压作变量建立的电路方程

31、,称为结点方程。这样,只需求解(n-1)个结点方程,就可得到全部结点电压,然后根据KVL方程可求出各支路电压,根据VCR方程可求得各支路电流。 一、结点电压 在具有n个结点的连通电路(模型)中,可以选其中一个结点作为基准,其余(n-1)个结点相对基准结点的电压,称为结点电压。将基准结点作为电位参考点或零电位点,各结点电压就等于各结点电位。这些结点电压不能构成一个闭合路径,不能组成KVL方程,不受 KVL约束,是一组独立的电压变量。由于任一支路电压是其两端结点电位之差或结点电压之差,由此可求得全部支路电压。 例如图示电路各支路电压可表示为: u1=u10=v1 u4=u10-u30=v1-v3

32、u2=u20=v2 u5=u10-u20=v1-v2 u3=u30=v3 u6=u20-u30=v2-v3二、结点方程 下面以图示电路为例说明如何建立结点方程。 21 对电路的三个独立结点列出KCL方程: i1+i4+i5=iS1i2-i5+i6=0i3-i4-i6=-iS2列出用结点电压表示的电阻 VCR方程: i1=G1v1 i2=G2v2 i3=G3v3i4=G4(v1-v3) i5=G5(v1-v2) i6=G6(v2-v3)代入KCL方程中,经过整理后得到: (G1+G4+G5)v1-G5v2-G4v3=iS1-G5v1+(G2+G5+G6)v2-G6v3=0 节点方程-G4v1-G

33、6v2+(G3+G4+G6)v3=-iS2写成一般形式 G11v1+G12v2+G13v3=iS11G21v1+G22v2+G23v3=iS22(2-29)G31v1+G32v2+G33v3=iS33其中G、G、G称为结点自电导,它们分别是各结点全部电导的总和。此例中G= G+ G+ G,,G= G+ G+ G,,G= G+ G+ G。 G(ij)称为结点i和j的互电导,是结点i和j间电导总和的负值,此例中G= G=-G, G= G=-G, G= G=- G。 i、i、i是流入该结点全部电流源电流的代数和。此例中i=i,i=0,i=-i。 112233111452225633346ij1221

34、51331423326S11S22S33S11S1S22S33S3从上可见,由独立电流源和线性电阻构成电路的结点方程,其系数很有规律,可以用观察电路图的方法直接写出结点方程。 从上可见,由独立电流源和线性电阻构成电路的结点方程,其系数很有规律,可以用观察电路图的方法直接写出结点方程。 由独立电流源和线性电阻构成的具有n个结点的连通电路,其结点方程的一般形式为: G(n-1)1v1+G(n-1)2v2+G(n-1)(n-1)vn-1=iS(n-1(n-1)(2-30)2112222(n-1)n-1S22Gv+Gv+.+Gv=i1111221(n-1)n-1S11Gv+Gv+.+Gv=i 22 三

35、、结点分析法计算举例 结点分析法的计算步骤如下: 1.指定连通电路中任一结点为参考结点,用接地符号表示。标出各结点电压,其参考方向总是独立结点为“+”,参考结点为“”。 2.用观察法列出(n-1)个结点方程。3.求解结点方程,得到各结点电压。 4.选定支路电流和支路电压的参考方向,计算各支路电流和支路电压。 例217 用结点分析法求图2-28电路中各电阻支路电流。 图2-28 解:用接地符号标出参考结点,标出两个结点电压u1和u2的参考方向,如图所示。用观察法列出结点方程: (1S+1S)u1-(1S)u2=5A-(1S)u1+(1S+2S)u2=-10A解得各结点电压为: u1=1V u2=

36、-3V选定各电阻支路电流参考方向如图所示,可求得 i1=(1S)u1=1A i2=(2S)u2=-6A i3=(1S)(u1-u2)=4A例218 用结点分析法求图2-29电路各支路电压 图2-29 23 解: 参考结点和结点电压如图所示。用观察法列出三个结点方程: (2S+2S+1S)u1-(2S)u2-(1S)u3=6A-18A-(2S)u1+(2S+3S+6S)u2-(6S)u3=18A-12A-(1S)u1-(6S)u2+(1S+6S+3S)u3=25A-6A整理得到: 5u1-2u2-u3=-12V-2u1+11u2-6u3=6V-u1-6u2+10u3=19V解得结点电压 u1=-

37、1Vu2=2Vu3=3V求得另外三个支路电压为: u4=u3-u1=4V u5=u1-u2=-3V u6=u3-u2=1V四、含独立电压源电路的结点方程 当电路中存在独立电压源时,不能用式(230)建立含有电压源结点的方程,其原因是没有考虑电压源的电流。若有电阻与电压源串联单口,可以先等效变换为电流源与电阻并联单口后,再用式(230)建立结点方程。若没有电阻与电压源串联,则应增加电压源的电流变量来建立结点方程。此时,由于增加了电流变量,需补充电压源电压与结点电压关系的方程。 综上所述,由独立电压源,独立电流源和电阻构成的电路,其结点方程的一般形式应改为以下形式 G11v1+G12v2+.+G1

38、(n-1)vn-1+iuS11=iS11 G21v1+G22v2+.+G2(n-1)vn-1+iuS22=iS22 G(n-1)1v1+G(n-1)2v2+G(n-1)(n-1)vn-1+iuS(n-1)(n-1)=iS(n-1)(n-1) 其中iuskk是与第k个结点相连的全部电压源电流的代数和,其电流参考方向流出该结点的取正号,相反的取负号。 由于变量的增加,需要补充这些电压源与相关结点电压关系的方程,其一般形式如下: uSk=vi-vj其中,vi是连接到电压源参考极性“”端的结点电压,vj是连接到电压源参考极性“”端的结点电压。 例219 用结点分析法求图2-30(a)电路的电压u和支路

39、电流i1,i2。 24 图2-30 解:先将电压源与电阻串联等效变换为电流源与电阻并联,如图(b)所示。对结点电压u来说,图(b)与图(a)等效。只需列出一个结点方程。 (1S+1S+0.5S)u=5A+5A图解得 10A=4V2.5S按照图(a)电路可求得电流i1和i2 u=5V-4V4V-10V=1A i2=-3A1W2W例220 用结点分析法求图2-31示电路的结点电压。 图2-31 解:选定6V电压源电流i的参考方向。计入电流变量I 列出两个结点方程: i1=(1S)u1+i=5A(0.5S)u2-i=-2A补充方程 u1-u2=6V解得 u1=4V,u2=-2V,i=1A这种增加电压

40、源电流变量建立的一组电路方程,称为改进的结点方程(modified node equation),它扩大了结点方程适用的范围,为很多计算机电路分析程序采用。 例221 用结点分析法求图2-32电路的结点电压。 25 图2-32 解:由于14V电压源连接到结点和参考结点之间,结点的结点电压u1=14V成为已知量,可以不列出结点的结点方程。考虑到8V电压源电流i列出的两个结点方程为: -(1S)u1+(1S+0.5S)u2+i=3A-(0.5S)u1+(1S+0.5S)u3-i=0补充方程 u2-u3=8V代入u1=14V,整理得到: 1.5u2+1.5u3=24Vu2-u3=8V解得: u2=1

41、2V u3=4V i=-1A五、割集分析法 与结点分析法用n-1个结点电压作为变量来建立电路方程类似,也可以用n-1个独立支路电压作为变量来建立电路方程。由于选择支路电压有较大的灵活性,当电路存在m个独立电压源时,其电压是已知量,若能选择这些支路电压作为变量,就可以少列m个电路方程。 现在用图232电路为例加以说明。为了求得电压u2,我们可以选择支路电压u2和两个电压源电压作为变量,列出与图示封闭面相交的几条支路电流的KCL方程 i4+i5-i2-i3=-3A图2-32 26 u41=(14V-u2+8V)2W2Wu1i5=5=(14V-u2)1W1Wu1i3=3=(-8V+u2)1W1Wi4

42、=1111(14V-u2+8V)+(14V-u2)-u2-(-8V+u2)=-3A2W1W2W1W求解方程得到u2=12V 25 含受控源的电路分析 在电子电路中广泛使用各种晶体管、运算放大器等多端器件。这些多端器件的某些端钮的电压或电流受到另一些端钮电压或电流的控制。为了模拟多端器件各电压、电流间的这种耦合关系,需要定义一些多端电路元件(模型)。 本节介绍的受控源是一种非常有用的电路元件,常用来模拟含晶体管、运算放大器等多端器件的电子电路。从事电子、通信类专业的工作人员,应掌握含受控源的电路分析。 一、受控源 受控源又称为非独立源。一般来说,一条支路的电压或电流受本支路以外的其它因素控制时统

43、称为受控源。受控源由两条支路组成,其第一条支路是控制支路,呈开路或短路状态;第二条支路是受控支路,它是一个电压源或电流源,其电压或电流的量值受第一条支路电压或电流的控制。 受控源可以分成四种类型,分别称为电流控制的电压源(CCVS),电压控制的电流源(VCCS),电流控制的电流源(CCCS)和电压控制的电压源(VCVS),如下图所示。 每种受控源由两个线性代数方程来描述: CCVS: u1=0 u=ri12VCCS: (2-31)r具有电阻量纲,称为转移电阻。 i1=0 i2=gu1(2-32)27 g具有电导量纲,称为转移电导。 CCCS: u1=0i2=a i1(2-33)a无量纲,称为转移电流比。 VCVS: i1=0 u2=m u1(2-34)m亦无量纲,称为转移电压比。 当受控源的控制系数r、g、a和m为常量时,它们是时不变双口电阻元件。本书只研究线性时不变受控源,并采用菱形符号来表示受控源(不画出控制支路),以便与独立电源相区别。 受控源与独立电源的特性完全不同,它们在电路中所起的作用也完全不同。 独立电源是电路的输入或激励,它为电路提供按给

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号