三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx

上传人:牧羊曲112 文档编号:3204949 上传时间:2023-03-11 格式:DOCX 页数:6 大小:38.19KB
返回 下载 相关 举报
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx_第1页
第1页 / 共6页
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx_第2页
第2页 / 共6页
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx_第3页
第3页 / 共6页
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx_第4页
第4页 / 共6页
三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx_第5页
第5页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx》由会员分享,可在线阅读,更多相关《三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导.docx(6页珍藏版)》请在三一办公上搜索。

1、三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。“符号看象限”的含义是:把角看做锐角,不考虑角所在象限,看n(/2)是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“”; 第三象限内只有正切和余切是“+”,其余全部是“”; 第四象限内只有余弦

2、是“+”,其余全部是“”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式 - 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tan cot=1 sin csc=1 cos sec=1 商的关系 sin/cos=tan=sec/csc cos/sin=cot=csc/sec 平方关系 sin2()+cos2()=1 1+tan2()=sec2() 1+cot2()=csc2() 同角三角函数关系六角形记忆法 构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。 倒数关系 对角线

3、上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin=sincos+cossin sin=sincos-cossin cos=coscos-sinsin cos=coscos+sinsin tan=(tan+tan )/(1tan tan) tan=(tantan)/(1+tan tan) 二倍角的正弦、余弦和正切公式 sin2=2sincos cos2=cos2()sin2()=2cos2()1=12s

4、in2() tan2=2tan/(1tan2() 半角的正弦、余弦和正切公式 sin2(/2)=(1cos)/2 cos2(/2)=(1+cos)/2 tan2(/2)=(1cos)/(1+cos) tan(/2)=(1cos)/sin=sin/1+cos 万能公式 sin=2tan(/2)/(1+tan2(/2) cos=(1tan2(/2)/(1+tan2(/2) tan=(2tan(/2)/(1tan2(/2) 三倍角的正弦、余弦和正切公式 sin3=3sin4sin3() cos3=4cos3()3cos tan3=(3tantan3()/(13tan2() 三角函数的和差化积公式 s

5、in+sin=2sin(+)/2) cos()/2) sinsin=2cos(+)/2) sin()/2) cos+cos=2cos(+)/2)cos()/2) coscos=2sin(+)/2)sin()/2) 三角函数的积化和差公式 sincos=0.5*sin(+)+sin()+ cossin=0.5*sin(+)sin()+ coscos=0.5*cos(+)+cos()+ sinsin= 0.5*cos(+)cos()+ 三角函数诱导公式 - 公式推导过程 万能公式推导 sin2=2sincos=2sincos/(cos2()+sin2().*, 再把*分式上下同除cos2(),可得

6、sin2=2tan/(1+tan2() 然后用/2代替即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3=sin3/cos3 =(sin2cos+cos2sin)/(cos2cos-sin2sin) =(2sincos2()+cos2()sinsin3()/(cos3()cossin2()2sin2()cos) 上下同除以cos3(),得: tan3=(3tantan3()/(1-3tan2() sin3=sin(2+)=sin2cos+cos2sin =2sincos2()+(12sin2()sin =2sin2sin3()+sin2sin3()

7、 =3sin4sin3() cos3=cos(2+)=cos2cossin2sin =(2cos2()1)cos2cossin2() =2cos3()cos+(2cos2cos3() =4cos3()3cos 即 sin3=3sin4sin3() cos3=4cos3()3cos 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b)/2 同理,若把两式相减,就得

8、到cosa*sinb=(sin(a+b)-sin(a-b)/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2 这样,我们就得到了积化和差的四个公式: sina*cosb=(sin(a+b)+sin(a-b)/2 cosa*sinb=(sin(a+b)-si

9、n(a-b)/2 cosa*cosb=(cos(a+b)+cos(a-b)/2 sina*sinb=-(cos(a+b)-cos(a-b)/2 好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin(x+y)/2)*cos(x-y)/2) sinx-siny=2cos(x+y)/2)*sin(x-y)/2) cosx+cosy=2cos(x+y)/2)*cos(x-y)/2) cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号