《水东够火电厂CCS&U子系统可行性研究报告.doc》由会员分享,可在线阅读,更多相关《水东够火电厂CCS&U子系统可行性研究报告.doc(84页珍藏版)》请在三一办公上搜索。
1、目 录第一章 总论- 5 -1.1项目名称- 5 -1.2编制依据- 5 -1.3研究范围- 5 -1.4项目背景- 5 -1.4.1 CCS&U系统发展过程- 6 -1.4.2 CCS&U系统现阶段行业特点- 8 -1.5 CCS&U项目意义- 9 -1.6项目概况- 9 -1.7经济分析- 10 -1.7.1项目总投资及资金来源- 10 -1.7.2建设周期- 10 -1.7.3经济评价- 10 -1.7项目结论- 10 -1.8存在问题及建议- 10 -第二章 市场分析- 11 -2.1 CCS 系统- 11 -2.1.1 CCS 系统概述- 11 -2.1.2 CCS系统组成- 11
2、-2.1.3世界CCS技术发展及应用- 15 -2.1.4中国CCS技术发展及应用- 16 -2.1.6 CCS技术的未来- 17 -2.2产品简介- 19 -2.3国内、外生产状况- 22 -2.3.1国外DMC生产状况- 22 -2.3.2国内DMC生产状况- 23 -2.4国内外DMC消费现状- 24 -2.4.1国外DMC消费现状- 24 -2.4.2国内DMC消费现状- 25 -2.5市场潜在需求分析- 26 -2.5.1替代光气和DMS的潜在需求- 27 -2.5.2汽油添加剂领域的潜在需求- 27 -2.5.3其他领域的潜在需求- 28 -2.6 DMC的价格分析与走向预测- 2
3、9 -2.7副产物的市场分析- 30 -第三章原料路线313.1 原料路线的选择原则313.2 多条原料路线的比较323.2.1 CCS工艺路线比较323.2.2 CO2的利用383.3 原料规格393.3.1吸收剂规格393.3.2碳酸二甲酯原料规格393.4 原料采购和供应41第四章 厂址选择424.1选址原则424.2选址背景434.3厂址概况434.3.1地理区位434.3.2自然条件444.3.3园区规划454.3.4基础建设464.3.5交通及运量504.3.6综合优势514.3.7生产条件52第五章 建设规模535.1设计依据535.2规模的确定545.2.1CCS规模545.2
4、.2碳酸二甲酯应用前景广阔555.2.2行业发展迅速,处于成长期555.2.3市场潜力并不等于现实需求565.2.4产能过剩,寻求出口56第六章 产品营销586.1营销概要586.2营销总体战略目标586.3推广战略596.4营销策略组合616.4.1产品定位与策略616.4.2定价策略616.4.3营销策略626.5促销策略636.6公共关系营销646.7中长期营销战略656.7.1市场反应分析及对策656.7.2后续产品市场拓展与销售65第七章 经济分析667.1投资估算667.1.1编制依据667.1.2投资估算677.1.3 建设项目总投资727.2 资金筹措727.2.1资金来源72
5、7.2.2 贷款及还款方式737.3产品成本估算737.3.1直接材料费、燃料及动力费747.3.2直接工资和其他直接支出747.3.3折旧及摊销767.3.4维修费777.3.5总成本费用估算表777.4财务评价777.4.1产品产量及报价777.4.2财务现金流量787.4.3损益表797.4.4获利能力评价807.4.5不确定性分析81第八章 研究结论858.1综合评价858.1.1本项目采用先进的生产工艺858.1.2环保、安全卫生及消防措施落实858.1.3项目抗风险能力858.2研究报告结论86第一章 总论1.1项目名称宁东水洞沟煤电厂新建一座CCS&U子系统。1.2编制依据1、当
6、前国家重点鼓励发展的产业、产品和技术目录;2、宁东能源化工基地自然、交通、生产条件等相关资料;3、宁夏回族自治区税收、建设等有关法令、法规。1.3研究范围1、二氧化碳捕集精制技术;1、碳酸二甲酯市场分析;2、原料路线;3、厂址选择;4、项目经济效益。1.4项目背景 1)CCS技术减低温室气体排放,防止气候变化已是全球共同面临的巨大挑战和急迫解决的问题。世界上约有40的CO2排放源于燃烧化石燃料的发电厂。据国际能源署(IEA)预测:到2030年,以化石燃料为基础的发电量要比目前增加约一倍,解决燃煤发电中C02:的问题成为降低温室气体排放最主要的任务。目前,全球公认的降低CO2排放最有效的方法之一
7、是碳捕获和封存和利用技术(CCS-Carbon Capture and Storage and use)。CCS是指C02从工业或相关能源的排放源分离出来,输送到一个封存地点,并且长期与大气隔绝的一个过程。CCS是稳定大气温室气体浓度的减缓行动中的一种选择方案,具有减少整体减缓成本,以及增加实现温室气体减排灵活性的潜力,是有效大量去除CO2排放的关键技术。CCS的广泛应用取决于技术成熟性、成本、整体潜力、在发展中国家的技术普及和转让及其应用技术的能力、法规因素、环境问题和公众反应。2)DMCD碳酸二甲酯(DMC)是一种重要的有机合成中间体,可替代高毒光气、硫酸二甲酯等作为甲基化剂或羰基化剂使用
8、,从而提高生产操作的安全性,降低环境污染;DMC具有优良的溶解性能,其熔、沸点范围窄,表面张力大,粘度低,同时具有较高的蒸发温度和较快的蒸发速度,可以作为低毒溶剂用于涂料工业和医药行业;以DMC为原料还可以开发、制备多种高附加值的精细化工产品,在合成材料、燃料、润滑油添加剂、汽油添加剂、食品增香剂、电子化学品等领域有广泛的应用。由于用途非常广泛,DMC被誉为当今有机合成的“新基石”。1.4.1 CCS&U系统发展过程1)CCS技术从20世纪70年代起,我国开始注意二氧化碳捕集与封存的研究工作。但与国际先进的做法相比,中国的CCS研究与开发还处于前期。二氧化碳捕集只适用于一些二氧化碳纯度高、比较
9、容易捕集的炼油、合成氨、制氢、天然气净化等工业过程。整体看,目前我国的二氧化碳捕集与封存仍处于实验室阶段,而且大都采用燃烧后捕集的方式,工业上的应用也主要是提高采油率。近年来中国在CCS的研究上作了很多工作,从2003年开始中国政府就参加了碳捕集领导人论坛。“973计划”、“863计划”在内的国家重大课题都对CCS进行了研究。此外,华能和神华等大型公司也对CCS进行规划、研究和示范。2008年7月16日,我国首个燃煤电厂二氧化碳捕集示范工程华能北京热电厂二氧化碳捕集示范工程正式建成投产,标志着二氧化碳气体减排技术首次在我国燃煤发电领域得到应用。2)二氧化碳的利用CO2在化工合成上的应用 CO2
10、除了成熟的化工利用(例如合成尿素、生产碳酸盐、阿司匹林、制取脂肪酸和水杨 酸及其衍生物等)以外,现在又研究成功了许多新的工艺方法,例如合成甲酸及其衍生物, 合成天然气、乙烯、丙烯等低级烃类,合成甲醇、壬醇、草酸及其衍生物、丙酯及芳烃的烷 基化,合成高分子单体及进行二元或三元共聚,制成了一系列高分子材料等,另外,利用CO2代替传统的农药作杀虫剂,也在研究之中。 CO2在农业上的应用 作为一种廉价的原料,CO2可用于蔬菜、瓜果的保鲜贮藏。目前,CO2气调冷藏已在欧美、 日本、澳大利亚等国家用于苹果、梨、柑桔和一些热带水果的贮藏。CO2也能用于粮食的贮 藏,它比通常所用的蒸蒸剂效果更好。把CO2引入
11、蔬菜温室,能增加蔬菜的生长速度,缩短其生长周期,提高温室的经济效益。用飞机将于冰撒入云层施行人工降雨,能解决久旱无雨, 庄稼失收的问题。 CO2在一般工业上的应用 CO2是很好的致冷剂。它不仅冷却速度快,操作性能好,不浸湿产品,不会造成二次污 染,而且投资少,人力省。利用CO2保护电弧焊接,既可避免金属表面氧化,又可使焊接速 度提高9倍。最近美国制成了不受烟、砂石和烟雾妨碍,能够正确测定距离的CO2激光测距 器。CO2在石油工业上的应用已较成熟。这首先体现在提高石油的采油率上。CO2作为油田注入剂,可有效地驱油。另外,CO2用作油田洗井用剂,效果也十分理想。目前,地热资源是 能源开发的重大课题
12、。低温和较低温区的地下热水最多,而且没有得到充分利用,其最大难 题是利用地下热水发电时的工作介质不理想,国际上用氟里昂和异丁烷所进行的试验都证明 没有希望。然而,用CO2作工作介质,利用较低温地下热水资源来发电,已在罗马尼亚研究 成功,并转入国家发电网。CO2用于超临界萃取 超临界CO2流体,由于具有与液体相近的密度,而粘度只有液体的l%,扩散系数是液体 的100倍,所以它的萃取能力远远超过有机溶剂。更为理想的是控制条件就可定向分离选定 的组分,可在常温和较低压力下工作,没有毒性和发生爆炸的危险,使用时不但有很好的工 作性能,而且可有效地浸出高沸点、高粘度、热敏性物质。超临界CO2萃取同前已在
13、大规模 生产装置中获得应用的有:从酒花中提取有效成分;从咖啡中脱除咖啡因;从石油残渣油中 回收各种油品;从油料种子中萃取油脂。结语CO2 的回收和综合利用具有很重要的现实意义,已引起了各国政府、企业和科技工作者的广泛重视。尽管在发达国家中CO2 在各个领域中得到了广泛的应用,但还需要在CO2下游化工产品的开发等新用途上进行强有力的研究,突破其发展的瓶颈,真正建立起以CO2 为碳源的独立工业体系。在不久的将来,CO2将成为煤、石油和天然气的代用品,为人类造福。1.4.2 CCS&U系统现阶段行业特点1)CCS行业特点潜力巨大、未工业化CO2捕集与封存技术被认为是电力等部门减少CO2排放的极有潜力
14、的技术, 而得到国际社会的普遍关注,然而CCS 技术在技术和经验等方面仍存在着很大不足。例如, 从燃煤电厂尾气中捕集CO2的研究, 目前只开展了小规模的商业示范运行, 大规模电厂中还没有真正工业化应用。行业受困技术“瓶颈”目前,CO2分离捕集技术主要包括溶剂吸收法、物理吸附法、膜分离法、低温分离法和O2/ CO2循环燃烧法等。此外,CO2的分离捕集技术还有水合物膜法、电化学法和膜吸收法等。但这些方法仍处于实验室研究阶段,并未实现真正意义上的工业化。目前中国的二氧化碳捕集和封存整体上还处于实验室阶段,而且大都采用燃烧后捕集的方式。工业上的应用也主要是提高采油率。现阶段工程上应用较多的CO2捕集技
15、术是乙醇胺(MEA)法,此法吸收能力强,可再生,效果好,但存在吸收剂易降解、能耗高、腐蚀严重等缺点。本设计将从改善乙醇胺法着手,改进技术,减少腐蚀,降低能耗。行业投资、能耗过高由于火电厂烟气中CO2浓度低和压力低,浓度大约为9%16%,含有大量的氮气,产生的气体流量巨大,捕集系统庞大,需耗费大量的能源。从而导致分离回收困难,成本较高,而且还会大大降低电厂的发电效率。综上所述综上本项目为维它为宁东华能煤电厂新建一套燃后用化学吸收法的CCS&U子系统。年吸收二氧化碳达2万吨,精制后二氧化碳纯度达到食品级。把工业级的二氧化碳与环氧丙烷、甲醇合成年产1万吨的碳酸二甲酯。1.5 CCS&U项目意义顺应我
16、国中长期能源发展战略的需要近年来,温室效应已成为全球性的气候问题,给社会和经济带来了严重的负面影响。CO2对温室效应的贡献占60%以上。随着全球工业化进程的加快,世界CO2排放量增加,其中中国CO2总排放量仅次于美国,列世界第2位,并呈现不断增长趋势。预计到2010 年,中国CO2总排放量将位居世界第一位,约占世界CO2排放量的1/ 5我国能源结构以煤炭为主,CO2排放量剧增,使我国在处理环境问题中非常棘手,同时也造成我国对东京议定书和巴厘岛公约的履约面临巨大压力。因此,CCS&U技术对解决温室效应具有重要的现实意义。1.6项目概况本项目采用乙醇胺化学法吸收CO2再经加热脱吸,精制,储存。再一
17、部分从环氧丙烷出发,先与CO2进行环加成生成碳酸丙烯酯,然后在催化剂作用下,通过均相催化或非均相催化工艺,与甲醇进行酯交换反应,从而实现联产DMC和乙二醇,副产二甲醚、二甘醇、水。该反应为常压反应,反应温度50100。反应全过程环氧乙烷的转化率97 % ,对DMC的选择性96%。该反应分两步进行。1.7经济分析1.7.1项目总投资及资金来源本项目的建设总投资额约为万元,其中建设投资15484.285万元,建设期贷款利息2728.74万元,流动资金3675.77万元。资金来源为向中国建设银行贷款10000万元,剩下的以企业自由资金注入的方式筹得,其中30%为铺底流动资金。1.7.2建设周期考虑建
18、设过程中各环节时间安排及干扰因素的影响,建设周期为一年。1.7.3经济评价本项目投资利润率为7.59%,投资利税率为23.85%,投资回收期为4.06年。1.7项目结论经产品市场分析、原料路线选择、建厂地址确定以及项目经济分析,最后证实本厂方案可行,不仅能实现本项目自身的低碳生活价值,亦能有力促进宁东地区以及西部地区的经济与社会发展。1.8存在问题及建议(1)本设计中某些工艺尚未大规模工业化应用,因此要将其投入大规模生产仍需要进一步的试验和改进,使其更加成熟。(2)本设计绿色环保低碳,符合目前的经济发展模式,需要各级政府给予更多支持,在税收等政策上提供优惠,使本项目早日实现较好的经济社会效益。
19、第二章 市场分析2.1 CCS 系统2.1.1 CCS 系统概述CCS(Carbon Capture and Storage)技术,是将二氧化碳(CO2)捕获和封存的技术。CCS技术是指通过碳捕捉技术,将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段,将其输送并封存到海底或地下等与大气隔绝的地方。CCS是稳定大气温室气体浓度的减缓行动组合中的一种选择方案。 CCS具有减少整体减缓成本以及增加实现温室气体减排灵活性的潜力。CCS的广泛应用取决于技术成熟性、成本、整体潜力、在发展中国家的技术普及和转让及其应用技术的能力、法规因素、环境问题和公众反应。CO2的捕获可用于大点源。CO2将
20、被压缩、输送并封存在地质构造、海洋、碳酸盐矿石中,或是用于工业生产。CO2大点源包括大型化石燃料或生物能源设施、主要CO2排放型工业、天然气生产、合成燃料工厂以及基于化石燃料的制氢工厂。潜在的技术封存方式有:地质封存(在地质构造中,例如石油和天然气田、不可开采的煤田以及深盐沼池构造),海洋封存(直接释放到海洋水体中或海底)以及将CO2固化成无机碳酸盐。2.1.2 CCS系统组成2.1.2.1 碳捕集CCS技术由碳捕集和碳封存两个部分组成。其中,碳捕集技术最早应用于炼油、化工等行业。由于这些行业排放的CO2浓度高、压力大,捕集成本并不高。而在燃煤电厂排放的CO2则恰好相反,捕集能耗和成本较高。现
21、阶段的碳捕集技术尚无法很好的解决这一问题。 碳捕集技术目前大体上分作三种:燃烧前捕集、富氧燃烧捕集和燃烧后捕集。三者各有优势,却又各有技术难题尚待解决,目前呈并行发展之势。哪一种先取得突破,哪一种就会成为未来的主流。 燃烧前捕集技术以IGCC(整体煤气化联合循环)技术为基础:先将煤炭气化成清洁气体能源,从而把CO2在燃烧前就分离出来,不进入燃烧过程。而且,CO2的浓度和压力会因此提高,分离起来较方便,是目前运行成本最廉价的捕集技术,其前景为学界所看好。问题在于,传统电厂无法应用这项技术,而是需要重新建造专门的IGCC电站,其建造成本是现有传统发电厂的两倍以上。 还有一种由燃烧源头直接产生高浓度
22、CO2的方法,就是利用富氧燃烧。一般燃烧是以空气提供燃烧所需的氧气,氧气浓度仅约2l,若改以高浓度或95以上的氧气,则称为富氧燃烧或纯氧燃烧。这是燃料中的碳与氢在纯氧中燃烧,由于少了空气中的氮气,燃烧后的废气含有90以上的CO2,便不需要再经由CO2捕获或分离程序,通过对气流进行冷却和压缩清除水汽就能直接把CO2压缩封存或再利用。目前富氧燃烧技术仍在研究发展中,德国对该项技术的研究处于领先水平,已制造出了示范模拟设备。此次我们的设计应用的就是燃烧后捕集。燃烧后捕集可以直接应用于传统电厂,北京高碑店热电厂所采用的就是这条技术路线。这一技术路线对传统电厂烟气中的CO2进行捕集,投入相对较少。这项技
23、术分支较多,可以分为化学吸收法、物理吸附法、膜分离法、化学链分离法等等。其中,化学吸收法被认为市场前景最好,受厂商重视程度也最高,但设备运行的能耗和成本较高。我们设计小组通过查阅相关文献和大量分析,在这次的设计中我们将运用节能化学吸收法特点是节能并且吸收剂使用年限增加。2.1.2.2碳封存CO2封存方式可分成4种:一是通过化学反应将CO2转化成固体无机碳酸盐;二是注入地下岩层;三是注入海洋1000米深处以下;四是工业直接应用或作为多种含碳化学品的生产原料。第二种方式最具潜力,向地层深处注入CO2的技术,在很多方面与油气工业已开发成功的技术相同,有些技术从20世纪80年代末就开始使用了。1)矿石
24、碳化矿石碳化是指利用碱性和碱土氧化物,如氧化镁(MgO)和氧化钙(CaO)将CO2固化,这些物质目前都存在于天然形成的硅酸盐岩中,例如:蛇纹岩和橄榄石。这些物质与CO2化学反应后产生诸如碳酸镁(MgCO3)和碳酸钙(CaCO3)这类化合物。地壳中硅酸岩的金属氧化物数量超过了固化所有可能的化石燃料储量燃烧产生的CO2量。矿石碳化产生出能够长时间稳定的二氧化硅和硅酸盐,因而能够在一些地区进行处置,如硅酸盐矿区,或者在建筑用途中加以利用,尽管与产生的数量相比这种二次利用可能相对很小,CO2在碳化后将不会释放到大气中。因此,几乎没有必要监测这些处理地点,而相关的风险非常小。利用天然硅酸盐的矿石碳化技术
25、正处于研究阶段,但是利用工业废弃物的某些流程目前处于示范阶段。2)地质封存图2.1 CO2地质封存示意图 三种类型的地质构造可用于CO2的地质封存:石油和天然气储层、深盐岩层构造和不可开采的煤层。在每种类型中,CO2的地质封存都将CO2压缩液注人地下岩石构造中。含流体或曾经含流体(如天然气、石油或盐水等)的多孔岩石构造(如枯竭的油气储层)都是潜在的封存CO2地点的选择对象。封存在800米深度以下,此处的周边压力和温度通常使CO2处于液体或超临界值的状态。在这种条件下CO2的密度是水密度的5080。该密度接近某些原油的密度,产生驱使CO2向上的浮力。因此,选择封存储层具有良好封闭性能的冠岩十分重
26、要,以确保把CO2限制在地下。当被注入地下时,CO2通过部分置换已经存在的流体(现场流体)来挤占并充满岩石中的孔隙。在石油和天然气储层中,用注人的CO2置换现场流体可为封存CO2提供大部分孔隙容积。在深水盐层构造中,随着CO2与现场流体和寄岩发生化学反应,就出现所谓的地质化学俘获机理。向衰竭或将要衰竭的油气层注人CO2是最有吸引力的选择,因为它可将CCS技术和提高采收率技术联系在一起。3)海洋封存CO2海洋封存方案是将捕获的CO2直接注入深海(深度在1000米以上),大部分CO2在这里将与大气隔离若干世纪。该方案的实施办法是:通过管道或船舶将CO2运输到海洋封存地点,从那里再把CO2注人海洋的
27、水柱体或海底。海洋封存尚未采用,也未开展小规模试点示范,仍然处在研究阶段。海洋占地表的70以上,海洋的平均深度为3800米。由于CO2可在水中溶解,所以,大气与水体在海洋表面不断进行CO2的自然交换,直到达到平衡为止。若CO2的大气浓度增加,海洋则逐渐吸收额外的CO2。4)工业利用工业利用是指工业上对CO2的利用,包括CO2作为反应物的生化过程,例如:那些在尿素和甲醇生产中利用CO2的生化过程,以及各种直接利用CO2的技术应用,比如:园艺、冷藏冷冻、食品包装、焊接、饮料和灭火材料的应用。目前,全球的CO2利用量每年约12亿吨,大多数(占总数的23)是用于生产尿素,其余用在肥料和其他产品的生产。
28、有些CO2从天然井中提取,而有一些来自工业源,主要是高浓缩源,例如:制氨和制氢厂,在生产过程中捕获CO2作为生产流程的一部分。此次CCS系统设计是以火力电厂为基础,捕集后只需要暂时贮存,所以此次不需要对CO2进行长期封存。下图为二氧化碳CCS各种方式。图2.2 CO2的CCS2.1.3世界CCS技术发展及应用随着全球面临的气候问题日益严峻,当前各国政府非常重视对CCS技术研究的支持。美国、欧盟、澳大利亚、加拿大、挪威等国家或政府间组织都制订了相应的研究规划,开展 CCS技术的理论、试验、示范和应用研究,并且已经有了成功的实例。其中,美国走在世界最前列,针对CCS技术的科研规划和项目组织实施较为
29、周密完善。美国于2000年开始由能源部主持正式开展CO2封存研究和发展项目,将地质封存和海洋封存列为主要研究方向,并制订了详细的技术路线图。2005年美国已开展了25个CO2地下构造注入、储存与监测的现场试验,并已进入验证阶段。为加强国际合作,2003年,美国发起成立了“碳收集领导人论坛”, 目前共有美国、加拿大、欧盟、英国、澳大利亚、日本、德国、挪威、巴西、意大利、印度、中国、哥伦比亚、墨西哥、俄罗斯、南非、法国等22个成员,共同组织开展理论与实验研究。当前国际上CCS技术研发所关注的主要问题包括:二氧化碳,在地质封存系统中吸附和迁移的机理与规律。在地层中的相态及其变化规律、化学反应及固化条
30、件:注二氧化碳采油过程中的物理化学理论问题、复杂渗流力学原理、各类二氧化碳提高采收率数值模拟基础模型;长距离管道运输二氧化碳的化学腐蚀机理与规律等。2.1.4中国CCS技术发展及应用与国际较为先进的CCS技术相比,中国还处于起步阶段,而且大都采用燃烧后捕集方式,工业上的应用也主要是提高石油采收率。目前我国只是在二氧化碳浓度高、比较容易捕集的炼油、合成氨、制氢、天然气净化等工业过程中应用二氧化碳捕集,而钢铁厂和电厂排放的烟道气流量很大占二氧化碳排放量的4050,但二氧化碳浓度仅为15左右,体系复杂,因而分离设备体系庞大,能耗高。不过,近年来中国在CCS的研究上进行了很多工作。从2003年开始政府
31、就参加了相关的领导人论坛。这几年,包括“973计划” 、“863计划”在内的国家重大课题都对CCS的研究进行了立项,并取得了重大进展。我国的二氧化碳捕集和封存并没有仅仅停留在理论研究上,一些企业还在实践中进行了尝试。2008年7月16日,我国首个燃煤电厂二氧化碳捕集示范工程华能北京高碑店热电厂二氧化碳捕集示范工程正式建成投产。经过紧张施工、调试、试生产,目前二氧化碳回收率大于85,年可回收二氧化碳3000t。电厂燃煤锅炉燃烧后烟气经各种方法脱硫后,其中含有约1213的二氧化碳及其他少量杂质,然后将这些气体送入二氧化碳填料吸收塔,利用一些溶液的化学特性吸收烟气中低浓度的二氧化碳,处理后的仅含少量
32、杂质、大量氮气和水分的净化气直接排向大气。分离、提纯后的二氧化碳纯度达到995以上项目捕获得到的二氧化碳能够达到食品级的标准在销售给中间商后,获得了双倍利润。虽然高碑店电厂把捕集的二氧化碳卖掉,并没有封存,也不能算做减排,但是该项目具有重大意义这是我国目前唯一一个在热电厂实现工业级应用碳捕集技术的项目,由华能集团投资、西安热工研究院提供技术支持。这个项目既是2007年“亚太六国”国际框架合作项目中的一项,也被北京市政府看作是“绿色奥运项目”的组成部分。因此其具有技术示范和政治任务的双重内涵可以说从运行之日起就受到了国内外的关注。华能的第二个碳捕集项目石洞口第二电厂碳捕获项目已于2009年7月在
33、上海开工。总投资1.5亿元,只捕获不封存,年底建成。预计年捕获二氧化碳1x105t,捕获率80以上,二氧化碳纯度99.6以上。该项目也是由西安热工研究院承担,其开发的燃煤电厂烟气二氧化碳捕集与处理技术已申请国家发明专利。该方法采用化学吸收法进行二氧化碳捕集,在低温条件下用化学溶剂吸收烟气中的二氧化碳,溶液加热时,二氧化碳从化学溶剂中解析出来,得到高浓度的二氧化碳,溶液循环使用。收集的二氧化碳仍然将沿用高碑店模式,加以工业利用。目前全球二氧化碳工业利用量大约是1x1081.5x108ta。中国目前大约有100家左右的二氧化碳生产企业,生产能力2x1062.5x106ta。一个几十万千瓦的燃煤电厂
34、一年所能捕集的二氧化碳的量约为1x1062106t,同目前中国所有企业生产的二氧化碳的量差不多,因此总体来说二氧化碳工业应用的消费量非常有限。2.1.6 CCS技术的未来据美国科学杂志报道,在美国奥巴马政府高达7870亿美元的经济刺激计划中,34亿美元将用于能源研究。而其中的绝大部分被指定用于化石燃料的研究。资助以工业化规模捕获燃煤电厂或石油精制所产生的二氧化碳,并且深埋于地下的试验项目。这笔经费相当于美国能源部目前每年用于这类研究的经费的5倍。最大的一个计划是捕获北达科他州羚羊谷排放的几百万吨二氧化碳,该项目计划于2009年初破土动工。2012年运行。捕获的二氧化碳将通过管道输送到加拿大的萨
35、斯喀彻省,当地的石油公司将这些二氧化碳注入干枯的油田。以提高石油采收率。种种迹象表明,各国政府越来越重视CCS技术的研发和利用,相信CCS一定会有美好的未来。表2.3给出了CCS技术在未来20年的应用展望。表2.1 CCS技术应用的未来预测技术重要性时间预测CO2-EOR技术进一步发展成为基础的封存技术通过进一步提高油藏采收率,增强CCS的安全性和经济效益2010年测量、监控、识别技术CCS实施的必要技术2010年封存场所的选择和风险评估封存地点的适应性评价及决策2010年CO2泄漏补救技术CO2储存过程中的必要技术2010年论证CCS应用于燃煤电站建立CCS电站应用先例2010年全美CO2封
36、存潜力评估发电站选址问题等2020年前新的低成本碳捕获技术CCS成本中最高的环节2020年前下一代CO2-EOR技术可实现大规模CO2储存增加限定条件下储存有用的CO2的规模(310倍)2020年一般普通电站应用CCS技术发电厂实现CO2零排放2020年通过CCS实现海上平台或地下油气田直接生产低碳燃料,并实现油藏或全油田CO2的循环将油藏内部及周边的大多数CO2封存,简化CCS流程,降低成本,实现从油气资源生产低碳燃料、热、电能2030年2.2产品简介本分厂主要产品为食品级的二氧化碳和碳酸二甲酯(Methyl-carbonate)。表2.2 CO2的物理性质序号性质数值1分子直径,nm0.3
37、50.512摩尔体积(0,0.10MPa),122.263临界状态温度,31.06压力,MPa7.382密度,Kg/ m34674三相点温度,-56.57压力,MPa0.5185气体密度(0,0.10MPa)Kg/ m31.9776液体密度Kg/ m311507汽化热(0时)KJ/Kg2358表面张力(-25时),nm/m9.139升华状态(0.10MPa)温度-78.5升华热,KJ/Kg573.6固态密度,Kg/ m3156210比热容(20,0.10MPa)Cp,KJ/(Kg,K)0.845Cv0.65111热导率(0,0.10MPa) w/(m,k)52.7512气体粘度(0,0.10M
38、Pa)mpa.s0.031813折射率(0,0.10MPa)(=546.1nm)1.000450614生成热(25)KJ/mol393.7表2.3 液体二氧化碳标准标准代号GB6025-93GB1917-94GB10621-89分类和级别优级品一级品合格品食品级食品级CO2%(体积)99.899.599.099.599.899.5水分%(重量)0.050.20.40.20.2酸度符合检验符合检验油分未检出不得检出不得检出不得检出CO,H2S,PH3有机还原物不得检出醇类(以乙醇计)mg/l30100气味无异味无异味无异味无异味生产出来的达到食品级二氧化碳直接卖给银川重啤大梁山牌啤酒。因为我们生
39、产的二氧化碳经过提纯后的纯度达到食品级了99.9%,接下来不做重点考虑。2)碳酸二甲酯碳酸二甲酯(简称DMC)常温下是一种无色透明、微有甜味的液体,难溶于水,但可以与醇、醚、酮等几乎所有的有机溶剂混溶。DMC分子结构中含有CH3-、CH3O-、-CO-、CH3O-CO-等多种官能团,具有较好的化学反应活性,是一种毒性很低、符合现代“清洁工艺”要求的环保型有机化工原料,是重要的有机合成中间体。因而广泛用于羰基化、甲基化、甲氧基化和羰基甲基化等有机合成反应,用于生产聚碳酸酯、异氰酸酯、聚氨基甲酸酯、聚碳酸酯二醇、烯丙基二甘醇碳酸酯、甲胺基甲酸萘酯(西维因)、苯甲醚、四甲基醇铵、长链烷基碳酸酯、碳酰
40、肼、丙二酸酯、丙二尿烷、碳酸二乙酯、三光气、呋喃唑酮、肼基甲酸甲酯、苯胺基甲酸甲酯等多种化工产品。表2.4 碳酸二甲酯物性参数表中文名称碳酸二甲酯(碳酸甲酯)英文名Carbonicacid,dimethylesterDimethyl carbonateMethyl-carbonateCarbonicaciddimethylesterCas编号616-38-6分子式C3H6O3;(CH3O)2CO分子量90.07结构式相对密度1.07熔点4沸点90.1蒸汽压(20)5.60KPa溶解性不溶于水,可混溶于多数有机溶剂、酸、碱稳定性稳定外观与性状无色液体,有芳香气味危险标记7(易燃液体)主要用途用作
41、溶剂,用于有机合成1992年,DMC在欧洲通过了非毒性化学品(Non-toxic substance)的注册登记,此后受到人们广泛关注,被称为绿色化学品。一方面DMC有望在诸多领域全面替代光气、硫酸二甲酯(DMS)、氯甲烷及氯甲酸甲酯等剧毒或致癌物进行羰基化、甲基化、甲酯化及酯交换等反应生产多种化工产品,既提高了生产操作的安全性,同时也降低了对环境的污染;另一方面,以DMC为原料可以开发制备多种高附加值的精细专用化学品,在医药、农药、合成材料、染料、润滑油添加剂、食品增香剂、电子化学品等领域获得广泛应用;第三,它的非反应性用途是用作溶剂和代替甲基叔丁基醚(MTBE)作为汽、柴油添加剂。基于以上
42、广泛用途,DMC被称为21世纪有机合成的“新基石”,它的发展将对煤化工、甲醇化工和碳一化工起到巨大的推动作用。DMC的产品规格如下:表2.5 碳酸二甲酯质量标准(Q/CH02-2000)指标指标(摩尔分率)一级品优级品纯级品外观无色透明液体,无可见杂质碳酸二甲酯,%99.599.899.8水份,%0.10.0500.0020甲醇含量,%0.200.0500.0020色度(铂-钴色号),号1055相对密度,g/cm31.0710.0052.3国内、外生产状况2.3.1国外DMC生产状况国外DMC生产和消费多年来没有大的变化,生产厂家主要集中在美国、西欧和日本。美国是世界第一生产大国,约占世界总产
43、能的35%以上。目前,国外DMC生产企业相对较为集中,只有十几家生产企业。国外DMC生产企业主要有GE(通用电气公司)、Enichem Synthesis SPA(意大利埃尼公司)、Mitsubishi Chemical Corporation(日本三菱化学公司)以及日本宇部公司等。2004年,国外总生产能力达到17万20万吨/年,最大的生产商是美国GE公司,其生产能力约占国外DMC总产能的35%;其次是日本三菱化学公司和日本宇部兴产公司。国外DMC主要用于生产聚碳酸酯、医药中间体、农药杀虫剂、农用化学品等方面,其消费构成为:聚碳酸酯43.5,医药26.1,农药21.7,其它8.7。在美国,D
44、MC主要用于生产呋喃唑酮;西欧主要用于生产呋喃唑酮及农用化学品或药物中间体,少部分用于生产聚碳酸酯;日本的DMC主要用于生产聚碳酸酯、农用化学品或药物中间体。2.3.2国内DMC生产状况我国DMC产品开发始于20世纪80年代初期,早期生产工艺均为光气化法,装置规模一般都为300500吨/年,生产技术基本上都是企业自主开发的。90年代以后,各大高校和科研院所相继对非光气法DMC生产工艺进行了开发研究。通过二十多年的研究和实践,我国DMC的生产工艺有了较大的改进。目前,光气法DMC生产装置全部停产;液相氧化羰基化工艺得到初步应用,形成4000吨/年的工业化生产装置;尿素法也已实现工业化生产,装置规
45、模为5000吨/年;酯交换法工艺得到大规模的发展,产能之和约占总量的90%以上,已经成为我国DMC生产的主流工艺。我国DMC生产企业已超过约20家,总产量在20万吨/年以上,装置平均开工率较低,约为60%;但国内几家大型生产企业装置平均开工率均较高,达到90%以上。表2.6 2010年国内主要DMC生产厂商企业名称生产能力(吨/年)生产方法河北唐山市朝阳化工集团18000酯交换法锦西炼油化工总厂10000酯交换法山东泰丰矿业集团10000酯交换法安徽铜陵金泰化工有限公司精细化工厂11000酯交换法山东石大胜华化工股份有限公司30000酯交换法山东海科科技股份有限公司10000酯交换法锦西天然气
46、化工有限责任公司15000酯交换法湖北兴山兴利华化工有限公司4000液相氧化羰基化黑化集团12000液相氧化羰基化合计120000我国DMC装置平均开工率较低,主要因素是:小企业较多,装置开工不正常,部分企业停产;新投产装置还没有完全形成生产能力;多采用酯交换法生产,而国际原油价格居高不下,致使该法原料环氧烷价格处于高位,从而导致产品生产成本过高;国内传统DMC应用领域已趋于饱和,新应用领域除涂料行业外还有待进一步开发;企业对目标市场缺乏预测,因此常常在产品销售环节出现问题;多数企业将产品目标市场定位在出口上,但国际市场竞争激烈,产品质量及销售渠道等因素加大了产品出口的难度。随着生产技术的日益成熟和DMC应用范围的不断拓宽和开发深度的不断加大,国