《任意角三角函数的概念教学设计.docx》由会员分享,可在线阅读,更多相关《任意角三角函数的概念教学设计.docx(10页珍藏版)》请在三一办公上搜索。
1、任意角三角函数的概念教学设计“任意角三角函数的概念”教学设计 陶维林 一内容和内容解析 三角函数是一个重要的基本初等函数,它是描述周期现象的重要数学模型它的基础主要是几何中的相似形和圆,研究方法主要是代数中的图象分析和式子变形,三角函数的研究已经初步把几何与代数联系起来它在物理学、天文学、测量学等学科中都有重要的应用,它是解决实际问题的重要工具,它是学习数学中其他学科的基础 角的概念已经由锐角扩展到0360内的角,再扩充到任意角,相应地,锐角三角函数概念也必须有所扩充任意角三角函数概念的出现是角的概念扩充的必然结果 比较锐角三角函数与任意角三角函数这两个概念,共同点是,它们都是“比值”,不同点
2、是锐角三角函数是“线段长度的比值”,而任意角三角函数是直角坐标系中“坐标与长度的比值,或者是坐标的比值”正是由于“比值”这一与在角的终边上所取点的位置无关的特点,因此,可以用角的终边与单位圆的交点的坐标来表示任意角的三角函数,这是概念的核心这样定义,不仅简化了任意角三角函数的表示,也为后续研究它的性质带来了方便 从锐角三角函数到任意角三角函数类似于从自然数到整数扩充的过程,产生了“符号问题”因此,学习任意角三角函数可以与锐角三角函数相类比,借助锐角三角函数的概念建立起任意角三角函数的概念 任意角三角函数概念的重点是任意角的正弦、余弦、正切的定义它们是本节,乃至本章的基本概念,是学习其他与三角函
3、数有关内容的基础,具有根本的重要的作用解决这一重点的关键,是学会用直角坐标系中,角的终边上的点的坐标来表示三角函数因为正切函数并不独立,最主要的是正弦函数与余弦函数 任意角三角函数自然具有函数的一切特征,有它的定义域,对应法则以及值域任意角三角函数的定义域是实数集,这是因为,在建立弧度制以后,角的集合与从这个意义上说,“角是实数”,三角函数是定义在实数集上的函数各种不同的三角函数定义了不同的对应法则,因而可能有不同的定义域与值域 实数集合间建立了一一对应关系,任意角三角函数概念是核心概念,它是解决一切三角函数问题的基点无论是研究三角函数在各象限中的符号、特殊角的三角函数值,还是同角三角函数间的
4、关系,以及三角函数的性质,等等,都具有基本的重要的意义 在建立任意角三角函数这个定义的过程中,学生可以感受到数与形结合,以及类比、运动、变化、对应等数学思想方法 1 二目标和目标解析 本节课的目标是,理解任意角三角函数的定义 学生已经学习过锐角三角函数sin,cos,tan,了解三角函数是直角三角形中边长的比值,这个比值仅与锐角的大小有关,是随着锐角取值的变化而变化的,其值是惟一确定的,等函数的要素这是任意角三角函数概念的“生长点” 理解任意角三角函数定义的关键是由锐角三角函数这个线段长度的比值扩展为点的坐标或坐标的比值因此,对锐角三角函数理解得怎样,对理解任意角三角函数有决定意义,复习锐角三
5、角函数,加深对锐角三角函数的理解是必要的 要实现让学生“理解”任意角三角函数定义的教学目标,莫过于让学生参与任意角三角函数定义的过程让学生感受到因角的概念的扩展,锐角三角函数概念扩展的必要性,任意角三角函数是锐角三角函数概念的自然延伸反过来,既然锐角集合是任意角集合的子集,那么,锐角三角函数也应该是任意角三角函数的特殊情况,是一个包含关系让学生参与定义,可以感受到这样定义的合理性,感受到这个定义是自然的 三教学问题诊断分析 从锐角三角函数到任意角三角函数的学习,从认知结构发展的角度来说,是属于“下、上位关系学习”,是一个从特殊到一般的过程,“先行组织者”是锐角三角函数的概念教学策略上先复习包容
6、性小、抽象概括程度低的锐角三角函数的概念,然后让学生“再创造”抽象程度高的上位概念,并形成新的认知结构,让原有的锐角三角函数的概念类属于抽象程度更高的任意角三角函数的概念之中 学生过去在直角三角形中研究过锐角三角函数,这对研究任意角三角函数在认识上会有一定的局限性,所以学生在用角的终边上的点的坐标来研究三角函数可能会有一定的困难可以让学生在原有的对锐角三角函数的几何认识的基础上,尝试让学生建立用终边上的点的坐标定义任意角三角函数,或者尝试用终边上的点的坐标定义锐角三角函数,然后再定义任意角的三角函数 教学的另一个难点是,任意角三角函数的定义域是实数集因为学生刚刚接触弧度制,未必能理解“把角的集
7、合与实数集建立一一对应”到底是为了什么可以在复习锐角三角函数时,把锐角说成区间内的角,以便分散这个难点 2四教学支持条件分析 利用几何画板软件,可以动态改变角的终边位置,从而改变角的终边上点的坐标大小的特点,便于学生认识任意角的位置的改变,所对应的三角函数值也改变的特点,感受函数的本质;感受终边相同的角具有相同的三角函数值;也便于观察各三角函数在各象限中符号的变化情况,加深对任意角三角函数概念的理解,增强教学效果 五教学过程设计 1理解锐角三角函数 2 要理解任意角三角函数首先要理解锐角三角函数锐角三角函数是任意角三角函数的先行组织者 问题1 任意画一个锐角,借助三角板,找出sin,cos,t
8、an的近似值 教师用几何画板任意画一个锐角要求学生自己任意也画一个锐角,利用手中的三角板画直角三角形,度量角的对边长、斜边长,计算比值 意图:复习初中所学习过的锐角三角函数,加深对锐角三角函数概念的理解,它是学习任意角三角函数的基础突出: 与点的位置的选取无关;是直角三角形中线段长度的比值 问题2 能否把某条线段画成单位长,有些三角函数值不用计算就可以得到? 意图:学生根据自己实际画图操作,以及计算比值的体验,会很快认为把斜边画成单位长比较方便,为后续任意角三角函数的“单位圆定义法”做铺垫 问题3 锐角三角函数sin作为一个函数,自变量以及与之对应的函数值分别是什么? 意图:以便与后面的任意角
9、三角函数的自变量是角,对应的函数值是的终边与单位圆交点的纵坐标比较 锐角三角函数sin作为一个函数,自变量是锐角由于角的弧度值与实数可以一一对应,所以,是上的实数而与之对应的函数值sin是线段长度的比值,是区间2上的实数 问题4 你产生过这个疑问吗:“三角函数只有这三个?” 意图:这个问题具有元认知提示的特点,引导学生勤于思考,逐步学会发现问题、提出问题、研究问题 三条边相互比,可以产生六个比还有哪三个呢?再把已知的三个倒过来 2任意角三角函数定义的“再创造” 教师利用几何画板,把角的顶点定义为原点,一边与x轴的正半轴重合,转动另一条边,表现任意角 问题5 现在,角的范围扩大了在直角坐标系中,
10、使得角的顶点在原点,始边与x轴的正半轴重合在这样的环境下,你认为,对于任意角,sin,cos,tan怎样来3 定义好呢? 意图:可以打破知识结构的平衡,感受到学习新知识的必要性角的范围扩大了,锐角三角函数也应该“与时俱进”,并不显得突然把定义的主动权交给学生,引导学生参与定义过程,发展思维 有两种可能的回答 可能一:在的终边上任意画一点P,|OP|r yxy sin,cos,tan rrx可能二:设角的终边与单位圆的交点为P ysiny,cosx,tan x不论出现可能一还是可能二,都再问:“都是这样的吗?” 引导学生议论,以确认两种定义方法的一致性、各自特点再问“你赞成哪一种?”,统一认识,
11、建立任意角三角函数的定义 因为前面已经有引导,学生可能很快接受“可能二” 3任意角三角函数的认识 问题6求下列三角函数值: 7sin270,cos,tan 6问题6 说出几个使得cos1的的值 意图:通过定义的简单应用,把握定义的内涵 逐题给出,对于每一个答案,都要求学生说出“你是怎样得到的”突出“画终边,找交点坐标,算比值”的步骤 问题6 指出下列函数值: sin1311; sin; sin 666意图:角的终边位置决定了三角函数值的大小终边位置相同的角同一三角函数值相等于是有 sinsin, coscos, tantan 问题6 确定下列三角函数的符号: cos250; sin; tan;
12、 4911sin1650; tan; cos 44 4 cos0,在哪个象限?请说明理由反过来呢? tan0,角的哪些三角函数值在第二、三象限都是负数?为什么? tan在哪些象限中取正数?为什么? 意图:认识三角函数在各象限中的符号 问题7 做了这么多题,要反思你是否发现了任意角三角函数的一些性质?还有些什么体会? 意图:体验以后的概括,阶段小结抓住各三角函数的定义不放;各象限中三角函数的符号特点,等 教师板书学生获得的成果、感受 4任意角三角函数的定义域 问题8 是任意角,作为函数的sin,cos,tan,它们的定义域分别是什么? 意图:三角函数也是函数,自然应该关心它的定义域 建立了角的弧
13、度制,角的集合与实数集合之间建立了一一对应关系,因此,sin,cosy的定义域是R;tan中,x0,于是tan的定义域是|k,kZ,R x2仍然紧扣定义,并引导以弧度制表示它的定义域 5练习 确定下列三角函数值的符号,并借助计算器计算: cos260; sin; tan 3 求下列三角函数值: 1723 cos; tan; sin 466小结 问题9 下课后,你走出教室,如果有人问你:“过去你就学习过锐角三角函数,今天又学习了任意角的三角函数,它们的差别在哪里呢?”你怎么回答他? 意图:通过问题小结不追求面面俱到,突出锐角三角函数是三角形中,边长的比值,而任意角的三角函数是直角坐标系中角的终边与单位圆交点的坐标,或者是坐标的比值 若时间允许,再问:“还有其他收获吗?”比如,终边相同的角的同一三角函数相等;各象限三角函数的符号;任意角三角函数的定义域,等 六目标检测设计 5,写出的终边与单位圆交点的横坐标,并写出tan的值 4 求下列三角函数的值: 2325 cos; tan 661 角的终边与单位圆的交点是Q,点Q的纵坐标是,说出几个满足条件的角 2 5 点P在角终边上,说出sin,cos,tan分别是多少? 6