《膜分离基础知识普及技术课件.ppt》由会员分享,可在线阅读,更多相关《膜分离基础知识普及技术课件.ppt(133页珍藏版)》请在三一办公上搜索。
1、膜分离基础知识普及,内容,膜技术概述 膜分离装置 极化、污染现象和控制 典型的膜分离技术及应用领域,膜(Membrane)是什么?有何特性?膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。膜的特性:不管膜多薄,它必须有两个界面。这两个界面分别与两侧的流体相接触。膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。,膜技术概述 1.1 基本概念,膜分离过程原理:以选择性膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。通常
2、膜原料侧称为膜上游,透过侧称为膜下游。,分离膜种类:,分离膜,高分子膜的分离功能很早就已发现。1748年,耐克特(A.Nelkt)发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。1861年,施密特(A.Schmidt)首先提出了超过滤的概念。他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。这种过滤可称为超过滤。按现代观点看,这种过滤应称为微孔过滤。,1.2 膜分离技术发展简史,50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。真正意义上的分离膜出现在20世纪60
3、年代。1961年,米切利斯(A.S.Michealis)等人用各种比例的酸性和碱性的高分子电介质混合物以水-丙酮-溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。美国Amicon公司首先将这种膜商品化。1967年,DuPont公司研制成功了以尼龙-66为主要组分的中空纤维反渗透膜组件。同一时期,丹麦DDS公司研制成功平板式反渗透膜组件。反渗透膜开始工业化。,自上世纪60年代中期以来,膜分离技术真正实现了工业化。首先出现的分离膜是超过滤膜(简称UF膜)、微孔过滤膜(简称MF膜)和反渗透膜(简称RO膜)。以后又开发了许多其它类型的分离膜。在此期间,除上述三大膜外,其他类型的膜也获
4、得很大的发展。80年代气体分离膜的研制成功,使功能膜的地位又得到了进一步提高。,具有分离选择性的人造液膜是马丁(Martin)在60年代初研究反渗透时发现的,这种液膜是覆盖在固体膜之上的,为支撑液膜。60年代中期,美籍华人黎念之博士发现含有表面活性剂的水和油能形成界面膜,从而发明了不带有固体膜支撑的新型液膜,并于1968年获得纯粹液膜的第一项专利。70年代初,卡斯勒(Cussler)又研制成功含流动载体的液膜,使液膜分离技术具有更高的选择性。,1.3 膜的分类,1.按膜的材料分类表1 膜材料的分类,2.按膜的分离原理及适用范围分类 根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜
5、、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜等。3.按膜的形态分类 按膜的形状分为平板膜(Flat Membrane)、管式膜(Tubular Membrane)和中空纤维膜(Hollow Fiber membrane)。,4.按膜的结构分类 按膜的结构分为:对称膜(Symmetric Membrane)非对称膜(Asymmetric Membrane)复合膜(Composite Membrane),1.4 膜过滤的基础理论,通透量理论:一种基于粒子悬浊液在毛细管内流动的毛细管理论。水通量(Jw)和截留率(R):W透水量,A膜的有效面积,t时间c1料液中溶质浓度,c2透过液中溶质浓度,膜分
6、离基本原理,1.5 膜分离过程的类型 分离膜的基本功能是从物质群中有选择地透过或输送特定的物质,如颗粒、分子、离子等。或者说,物质的分离是通过膜的选择性透过实现的。几种主要的膜分离过程及其传递机理如表2所示。表2 几种主要分离膜的分离过程,续上表,1.6 膜材料,用作分离膜的材料包括天然的与人工合成的有机高分子材料和无机材料。原则上讲,凡能成膜的高分子材料和无机材料均可用于制备分离膜。但实际上,真正成为工业化膜的膜材料并不多。这主要决定于膜的一些特定要求,如分离效率、分离速度等。此外,也取决于膜的制备技术。,3,3,目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。从品种
7、来说,已有成百种以上的膜被制备出来,其中约40多种已被用于工业和实验室中。以日本为例,纤维素酯类膜占53,聚砜膜占33.3,聚酰胺膜占11.7,其他材料的膜占2,可见纤维素酯类材料在膜材料中占主要地位。,1.纤维素酯类膜材料 纤维素是由几千个椅式构型的葡萄糖基通过1,4-甙链连接起来的天然线性高分子化合物,其结构式为:,从结构上看,每个葡萄糖单元上有三个羟基。在催化剂(如硫酸、高氯酸或氧化锌)存在下,能与冰醋酸、醋酸酐进行酯化反应,得到二醋酸纤维素或三醋酸纤维素。C6H7O2+(CH3CO)2O C6H7O2(OCOCH3)2+H2O C6H7O2+3(CH3CO)2O C6H7O2(OCOC
8、H3)3+2 CH2COOH 醋酸纤维素是当今最重要的膜材料之一。醋酸纤维素性能稳定,但在高温和酸、碱存在下易发生水解。纤维素醋类材料易受微生物侵蚀,pH值适应范围较窄,不耐高温和某些有机溶剂或无机溶剂。因此发展了非纤维素酯类(合成高分子类)膜。,醋酸纤维素膜,醋酸纤维素膜的结构示意图,99,表皮层孔径 0.00080.001m,过渡层孔径 0.02 m,多孔层孔径 0.10.4 m,1%,显微镜下膜的照片,2.非纤维素酯类膜材料 常用于制备分离膜的合成高分子材料有聚砜、聚酰胺、芳香杂环聚合物和离子聚合物等。,聚砜类树脂具有良好的化学、热学和水解稳定性,强度也很高,pH值适应范围为113,最高
9、使用温度达120,抗氧化性和抗氯性都十分优良。因此已成为重要的膜材料之一。,早期使用的聚酰胺是脂肪族聚酰胺,如尼龙-4、尼龙-66等制成的中空纤维膜。这类产品对盐水的分离率在8090之间,但透水率很低,仅0.076 ml/cm2h。以后发展了芳香族聚酰胺,用它们制成的分离膜,pH适用范围为311,分离率可达99.5(对盐水),透水速率为0.6 ml/cm2h。长期使用稳定性好。由于酰胺基团易与氯反应,故这种膜对水中的游离氯有较高要求。,聚酰亚胺具有很好的热稳定性和耐有机溶剂能力,因此是一类较好的膜材料。例如,下列结构的聚酰亚胺膜对分离氢气有很高的效率。,离子性聚合物可用于制备离子交换膜。与离子
10、交换树脂相同,离子交换膜也可分为强酸型阳离子膜、弱酸型阳离子膜、强碱型阴离子膜和弱碱型阴离子膜等。在淡化海水的应用中,主要使用的是强酸型阳离子交换膜。磺化聚苯醚膜和磺化聚砜膜是最常用的两种离子聚合物膜。,用作膜材料的乙烯基聚合物包括聚乙烯醇、聚乙烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙烯、聚丙烯酰胺等。共聚物包括:聚丙烯醇/苯乙烯磺酸、聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲基丙烯酸酯、聚乙烯/乙烯醇等。聚乙烯醇/丙烯腈接枝共聚物也可用作膜材料。,常见材料的最高允许使用温度,无机膜多以金属及其氧化物、多孔玻璃、陶瓷为材料。从结构上可分为致密膜、多孔膜和复合非对称修正膜三种。,1.7 膜的制备,1.分
11、离膜制备工艺类型 膜的制备工艺对分离膜的性能十分重要。同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。目前,国内外的制膜方法很多,其中最实用的是相转化法(流涎法和纺丝法)和复合膜化法。,2.相转化制膜工艺 相转化是指将均质的制膜液通过溶剂的挥发或向溶液加入非溶剂或加热制膜液,使液相转变为固相的过程。相转化制膜工艺中最重要的方法是LS型制膜法。它是由加拿大人劳勃(S.Leob)和索里拉金(S.Sourirajan)发明的,并首先用于制造醋酸纤维素膜。,将制膜材料用溶剂形成均相制膜液,在模具中流涎成薄层,然后控制温度和湿度,使溶液缓缓
12、蒸发,经过相转化就形成了由液相转化为固相的膜,其工艺框图可表示如下:,图2 L-S 法制备分离膜工艺流程,3.复合制膜工艺 由L-S法制的膜,起分离作用的仅是接触空气的极薄一层,称为表面致密层。它的厚度约0.251 m,相当于总厚度的1/100左右。理论研究表明可知,膜的透过速率与膜的厚度成反比。而用L-S法制备表面层小于0.1 m的膜极为困难。为此,发展了复合制膜工艺,其方框图如图3所示。,图3 复合制膜工艺流程框图,1.8 膜的保存,分离膜的保存对其性能极为重要。主要应防止微生物、水解、冷冻对膜的破坏和膜的收缩变形。微生物的破坏主要发生在醋酸纤维素膜;而水解和冷冻破坏则对任何膜都可能发生。
13、温度、pH值不适当和水中游离氧的存在均会造成膜的水解。冷冻会使膜膨胀而破坏膜的结构。,膜的收缩主要发生在湿态保存时的失水。收缩变形使膜孔径大幅度下降,孔径分布不均匀,严重时还会造成膜的破裂。当膜与高浓度溶液接触时,由于膜中水分急剧地向溶液中扩散而失水,也会造成膜的变形收缩。,2 膜分离装置,将膜、固定膜的支撑材料、间隔物或管式外壳等组装成的一个单元称为膜组件。膜组件的结构及型式取决于膜的形状,工业上应用的膜组件主要有中空纤维式、管式、螺旋卷式、板框式等四种型式。管式和中空纤维式组件也可以分为内压式和外压式两种。,膜组件(Membrane Module),(1)、板框式(Plate-and-Fr
14、ame)膜组件 板框式是最早使用的一种膜组件。其设计类似于常规的板框过滤装置,膜被放置在可垫有滤纸的多孔的支撑板上,两块多孔的支撑板叠压在一起形成的料液流道空间,组成一个膜单元,单元与单元之间可并联或串联连接。不同的板框式设计的主要差别在于料液流道的结构上。,(2)、管式(Tubular)膜组件 管式膜组件有外压式和内压式两种。对内压式膜组件,膜被直接浇铸在多孔的不锈钢管内或用玻璃纤维增强的塑料管内。加压的料液流从管内流过,透过膜的渗透溶液在管外侧被收集。对外压式膜组件,膜则被浇铸在多孔支撑管外侧面。加压的料液流从管外侧流过,渗透溶液则由管外侧渗透通过膜进入多孔支撑管内。无论是内压式还是外压式
15、,都可以根据需要设计成串联或并联装置。,(3)、螺旋卷式(Spiral Wound)膜组件 目前,螺旋卷式膜组件被广泛地应用于多种膜分离过程。膜、料液通道网、以及多孔的膜支撑体等通过适当的方式被组合在一起,然后将其装入能承受压力的外壳中制成膜组件。通过改变料液和过滤液流动通道的形式,这类膜组件的内部结构也可被设计成多种不同的形式。,(4)、中空纤维(Hollow Fiber)膜组件 中空纤维膜组件的最大特点是单位装填膜面积比所有其他组件大,最高可达到30000m2/m3。中空纤维膜组件也分为外压式和内压式。将大量的中空纤维安装在一个管状容器内,中空纤维的一端以环氧树脂与管外壳壁固封制成膜组件。
16、料液从中空纤维组件的一端流人,沿纤维外侧平行于纤维束流动,透过液则渗透通过中空纤维壁进入内腔,然后从纤维在环氧树脂的固封头的开端引出,原液则从膜组件的另一端流出。,各种膜组件的传质特性和综合性能比较:,3.浓差极化、污染现象和控制,浓差极化,在膜分离操作中,所有溶质均被透过液传送到膜表面上,不能完全透过膜的溶质受到膜的截留作用,在膜表面附近浓度升高。这种在膜表面附近浓度高于主体浓度的现象称为浓度极化或浓差极化(concentration polarization)。,浓差极化特性,它是一个可逆过程。只有在膜过程运行中产生存在,停止运行,浓差极化逐渐消失。它与操作条件相关,可通过降低膜两侧压差,
17、减小料液中溶质浓度,改善膜面流体力学条件,来减轻浓差极化程度,提高膜的透过流量。,膜表面附近浓度升高,增大了膜两侧的渗透压差,使有效压差减小,透过通量降低。当膜表面附近的浓度超过溶质的溶解度时,溶质会析出,形成凝胶层。当分离含有菌体、细胞或其他固形成分的料液时,也会在膜表面形成凝胶层。这种现象称为凝胶极化(gel polarization),膜分离过程中遇到的最大问题是膜污染(membrane fouling),膜污染的主要原因:凝胶极化引起的凝胶层;溶质在膜表面的吸附层;膜孔堵塞;膜孔内的溶质吸附。,膜污染不仅造成透过通量的大幅度下降,而且影响目标产物的回收率。为保证膜分离操作高效稳定地进行
18、,必须对膜进行定期清洗,除去膜表面及膜孔内的污染物,恢复膜的透过性能。膜的清洗一般选用水、盐溶液、稀酸、稀碱、表面活性剂、络合剂、氧化剂和酶溶液等为清洗剂。具体用何种清洗剂应根据膜的性质和污染物的性质而决定,使用的清洗剂要具有良好的去污能力,同时又不能损害膜的过滤性能。,如果用清水清洗就恢复膜的透过性能,则不需使用其他清洗剂。对于蛋白质的严重吸附所引起的膜污染,用蛋白酶(如胃蛋白酶、胰蛋白酶等)溶液清洗,效果较好。,清洗操作是膜分离过程不可缺少的步骤,但清洗操作是造成膜分离过程成本增高的重要原因。因此,在采用有效的清洗操作的同时,得采取必要的措施防止或减轻膜污染。例如,选用高亲水性膜或对膜进行
19、适当的预处理(如聚砜膜用乙醇溶液浸泡),均可缓解污染程度。此外,对料液进行适当的预处理(如进行预过滤、调节pH值),也可相当程度地减轻污染的发生。,如何防止膜污染以及开发高效节能的污染清除技术是进一步普及膜分离技术的关键之一,也是产学界孜孜以求的目标。研究表明,膜分离过程存在临界操作压力,在临界压力以下进行膜分离操作,可长时间维持较高的透过通量。降低对清洗操作的依赖程度,提高膜分离效率。,膜分离技术应用中需注意的几个问题,膜材料的选择膜孔径或截留分子量的选择膜结构选择组件结构选择溶液pH 控制溶液温度影响溶质浓度,料液流速与压力的控制,4 典型的膜分离技术及应用领域,微孔过滤(Microfil
20、tration,MF)超滤(Ultrafiltration,UF)反渗透(Reverse osmosis,RO)纳滤(Nanofiltration,NF)渗析(Dialysis,D)电渗析(Electrodialysis,ED)液膜(Liquid membrane,LM)渗透蒸发(Pervaporation,PV),m,A,Relative size of common material过滤对象,Molecularweight分子量,0.001,10,0.01,100,0.1,1000,1.0,10,4,10,10,5,100,1000,10,6,10,7,100,200,5,000,20,0
21、00,150,000,500,000,Aqueous salts中水盐份,Metal ions金属离子,Sugars蔗糖,FiltrationTechnology过滤方法,Pyrogens 热源,Virus 病毒,Colloidal silica 胶体硅,Albumin protein白蛋白,Bacteria 细菌,Carbon black碳黑,Paint pigment 颜料色素,Yeast cells 酵母,Milled flour 面粉,Beach sand海滩沙砾,Pollens 花粉,RO反渗透,Ultrafiltration 超滤,Microfiltration微滤,Particl
22、e filtration一般过滤,THE FILTRATION SPECTRUM 过滤谱图,NF 纳滤,4.1 微孔过滤技术,1.微孔过滤和微孔膜的特点 微孔过滤技术始于十九世纪中叶,是以静压差为推动力,利用筛网状过滤介质膜的“筛分”作用进行分离的膜过程。实施微孔过滤的膜称为微孔膜。微孔膜是均匀的多孔薄膜,厚度在90150 m左右,过滤粒径在0.02510m之间,操作压在0.010.2MPa。到目前为止,国内外商品化的微孔膜约有13类,总计400多种。,微孔膜的主要优点:孔径均匀,过滤精度高。能将液体中所有大于制定孔径的微粒全部截留;孔隙大,流速快。一般微孔膜的孔密度为107孔/cm2,微孔体
23、积占膜总体积的7080。由于膜很薄,阻力小,其过滤速度较常规过滤介质快几十倍;无吸附或少吸附。微孔膜厚度一般在90150m之间,因而吸附量很少,可忽略不计。无介质脱落。微孔膜为均一的高分子材料,过滤时没有纤维或碎屑脱落,因此能得到高纯度的滤液。,微孔膜的缺点:颗粒容量较小,易被堵塞;使用时必须有前道过滤的配合,否则无法正常工作。,2.微孔过滤技术应用领域(1)微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、药液的过滤、发酵工业的空气净化和除菌等。(2)微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而进行微粒和细菌含量的测定。(3)气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉
24、、细菌、病毒等;溶液和水中存在的微小固体颗粒和微生物,都可借助微孔膜去除。,(4)食糖与酒类的精制。微孔膜对食糖溶液和啤、黄酒等酒类进行过滤,可除去食糖中的杂质、酒类中的酵母、霉菌和其他微生物,提高食糖的纯度和酒类产品的清澈度,延长存放期。由于是常温操作,不会使酒类产品变味。(5)药物的除菌和除微粒。以前药物的灭菌主要采用热压法。但是热压法灭菌时,细菌的尸体仍留在药品中。而且对于热敏性药物,如胰岛素、血清蛋白等不能采用热压法灭菌。对于这类情况,微孔膜有突出的优点,经过微孔膜过滤后,细菌被截留,无细菌尸体残留在药物中。常温操作也不会引起药物的受热破坏和变性。许多液态药物,如注射液、眼药水等,用常
25、规的过滤技术难以达到要求,必须采用微滤技术。,4.2 超滤技术,1.超滤和超滤膜的特点 超滤技术始于 1861 年,其过滤粒径介于微滤和反渗透之间,约510 nm,在 0.10.5 MPa 的静压差推动下截留各种可溶性大分子,如多糖、蛋白质、酶等相对分子质量大于500的大分子及胶体,形成浓缩液,达到溶液的净化、分离及浓缩目的。超滤技术的核心部件是超滤膜,分离截留的原理为筛分,小于孔径的微粒随溶剂一起透过膜上的微孔,而大于孔径的微粒则被截留。膜上微孔的尺寸和形状决定膜的分离效率。超滤膜均为不对称膜,形式有平板式、卷式、管式和中空纤维状等。,超滤膜的结构一般由三层结构组成。即最上层的表面活性层,致
26、密而光滑,厚度为0.11.5m,其中细孔孔径一般小于10nm;中间的过渡层,具有大于10nm的细孔,厚度一般为110m;最下面的支撑层,厚度为50250m,具有50nm以上的孔。支撑层的作用为起支撑作用,提高膜的机械强度。膜的分离性能主要取决于表面活性层和过度层。,中空纤维状超滤膜的外径为0.52m。特点是直径小,强度高,不需要支撑结构,管内外能承受较大的压力差。此外,单位体积中空纤维状超滤膜的内表面积很大,能有效提高渗透通量。制备超滤膜的材料主要有聚砜、聚酰胺、聚丙烯腈和醋酸纤维素等。超滤膜的工作条件取决于膜的材质,如醋酸纤维素超滤膜适用于pH=38,三醋酸纤维素超滤膜适用于pH=29,芳香
27、聚酰胺超滤膜适用于pH=59,温度040,而聚醚砜超滤膜的使用温度则可超过100。,2.超滤膜技术应用领域 超滤膜的应用也十分广泛,在作为反渗透预处理、饮用水制备、制药、色素提取、阳极电泳漆和阴极电泳漆的生产、电子工业高纯水的制备、工业废水的处理等众多领域都发挥着重要作用。超滤技术主要用于含分子量500500,000的微粒溶液的分离,是目前应用最广的膜分离过程之一,它的应用领域涉及化工、食品、医药、生化等。主要可归纳为以下方面。,(1)纯水的制备。超滤技术广泛用于水中的细菌、病毒和其他异物的除去,用于制备高纯饮用水、电子工业超净水和医用无菌水等。(2)食品工业中的废水处理。在牛奶加工厂中用超滤
28、技术可从乳清中分离蛋白和低分子量的乳糖。(3)果汁、酒等饮料的消毒与澄清。应用超滤技术可除去果汁的果胶和酒中的微生物等杂质,使果汁和酒在净化处理的同时保持原有的色、香、味,操作方便,成本较低。,(4)在医药和生化工业中用于处理热敏性物质。分离浓缩生物活性物质,从生物中提取药物等。(5)汽车、家具等制品电泳涂装淋洗水的处理。汽车、家具等制品的电泳涂装淋洗水中常含有12的涂料(高分子物质),用超滤装置可分离出清水重复用于清洗,同时又使涂料得到浓缩重新用于电泳涂装。(6)造纸厂的废水处理。,超滤膜截留分子量的确定,中空纤维超滤膜结构,单内皮层,双皮层,超滤膜装置,4.3 反渗透技术,1.反渗透原理及
29、反渗透膜的特点 渗透是自然界一种常见的现象。人类很早以前就已经自觉或不自觉地使用渗透或反渗透分离物质。目前,反渗透技术已经发展成为一种普遍使用的现代分离技术。在海水和苦咸水的脱盐淡化、超纯水制备、废水处理等方面,反渗透技术有其他方法不可比拟的优势。,图4 渗透与反渗透原理示意图,渗透和反渗透的原理如下图所示。,如果用一张只能透过水而不能透过溶质的半透膜将两种不同浓度的水溶液隔开,水会自然地透过半透膜渗透从低浓度水溶液向高浓度水溶液一侧迁移,这一现象称渗透(图4a)。这一过程的推动力是低浓度溶液中水的化学位与高浓度溶液中水的化学位之差,表现为水的渗透压。,随着水的渗透,高浓度水溶液一侧的液面升高
30、,压力增大。当液面升高至H时,渗透达到平衡,两侧的压力差就称为渗透压(图4b)。渗透过程达到平衡后,水不再有渗透,渗透通量为零。,如果在高浓度水溶液一侧加压,使高浓度水溶液侧与低浓度水溶液侧的压差大于渗透压,则高浓度水溶液中的水将通过半透膜流向低浓度水溶液侧,这一过程就称为反渗透(图4c)。,反渗透技术所分离的物质的分子量一般小于500,操作压力为 2100MPa。用于实施反渗透操作的膜为反渗透膜。反渗透膜大部分为不对称膜,孔径小于0.5nm,可截留溶质分子。制备反渗透膜的材料主要有醋酸纤维素、芳香族聚酰胺、聚苯并咪唑、磺化聚苯醚、聚芳砜、聚醚酮、聚芳醚酮、聚四氟乙烯等。反渗透膜的分离机理至今
31、尚有许多争论,主要有氢键理论、选择吸附-毛细管流动理论、溶解扩散理论等。,2.反渗透与超滤、微孔过滤的比较 反渗透、超滤和微孔过滤都是以压力差为推动力使溶剂通过膜的分离过程,它们组成了分离溶液中的离子、分子到固体微粒的三级膜分离过程。一般来说,分离溶液中分子量低于500的低分子物质,应该采用反渗透膜;分离溶液中分子量大于500的大分子或极细的胶体粒子可以选择超滤膜,而分离溶液中的直径0.110m的粒子应该选微孔膜。以上关于反渗透膜、超滤膜和微孔膜之间的分界并不是十分严格、明确的,它们之间可能存在一定的相互重叠。,表3 反渗透、超滤和微滤技术的原理与操作特点比较,3.反渗透膜技术应用领域 反渗透
32、膜最早应用于苦咸水淡化。随着膜技术的发展,反渗透技术已扩展到化工、电子及医药等领域。反渗透过程主要是从水溶液中分离出水,分离过程无相变化,不消耗化学药品,这些基本特征决定了它以下的应用范围。,(1)海水、苦咸水的淡化制取生活用水,硬水软化制备锅炉用水,高纯水的制备。近年来,反渗透技术在家用饮水机及直饮水给水系统中的应用更体现了其优越性。(2)在医药、食品工业中用以浓缩药液、果汁、咖啡浸液等。与常用的冷冻干燥和蒸发脱水浓缩等工艺比较,反渗透法脱水浓缩成本较低,而且产品的疗效、风味和营养等均不受影响。(3)印染、食品、造纸等工业中用于处理污水,回收利用废液中有用的物质等。,工业应用的反渗透装置,工
33、业应用的反渗透装置的膜组件之间的连接,4.4 纳滤技术(Nanofiltration,NF),1.纳滤膜的特点 纳滤膜是八十年代在反渗透复合膜基础上开发出来的,是超低压反渗透技术的延续和发展分支,早期被称作低压反渗透膜或松散反渗透膜。目前,纳滤膜已从反渗透技术中分离出来,成为独立的分离技术。,纳滤膜的孔径为纳米级,介于反渗透膜(RO)和超滤膜(UF)之间,因此称为“纳滤”。纳滤膜的表层较RO膜的表层要疏松得多,但较UF膜的要致密得多。因此其制膜关键是合理调节表层的疏松程度,以形成大量具纳米级的表层孔。纳滤膜主要用于截留粒径在0.11nm,分子量为1000左右的物质,可以使一价盐和小分子物质透过
34、,具有较小的操作压(0.51MPa)。其被分离物质的尺寸介于反渗透膜和超滤膜之间,但与上述两种膜有所交叉。,纳滤恰好填补了超滤与反渗透之间的空白,它能截留透过超滤膜的那部分小分子量的有机物,透析被反渗透膜所截留的无机盐。而且,纳滤膜对不同价态离子的截留效果不同,对单价离子的截留率低(10%-80%),对二价及多价离子的截留率明显高于单价离子(90%)。目前关于纳滤膜的研究多集中在应用方面,而有关纳滤膜的制备、性能表征、传质机理等的研究还不够系统、全面。进一步改进纳滤膜的制作工艺,研究膜材料改性,将可极大提高纳滤膜的分离效果与清洗周期。,2.纳滤膜及其技术的应用领域 纳滤技术最早也是应用于海水及
35、苦咸水的淡化方面。由于该技术对低价离子与高价离子的分离特性良好,因此在硬度高和有机物含量高、浊度低的原水处理及高纯水制备中颇受瞩目;在食品行业中,纳滤膜可用于果汁生产,大大节省能源;在医药行业可用于氨基酸生产、抗生素回收等方面;在石化生产的催化剂分离回收等方面更有着不可比拟的作用。,NF正好介于UF和RO之间,截留分子量大概在300-1000。,4.5 离子交换膜,1.离子交换膜的分类(1)按可交换离子性质分类 与离子交换树脂类似,离子交换膜按其可交换离子的性能可分为阳离子交换膜、阴离子交换膜和双极离子交换膜。这三种膜的可交换离子分别对应为阳离子、阴离子和阴阳离子。,(2)按膜的结构和功能分类
36、 按膜的结构与功能可将离子交换膜分为普通离子交换膜、双极离子交换膜和镶嵌膜三种。普通离子交换膜一般是均相膜,利用其对一价离子的选择性渗透进行海水浓缩脱盐;双极离子交换膜由阳离子交换层和阴离子交换层复合组成,主要用于酸或碱的制备;镶嵌膜由排列整齐的阴、阳离子微区组成,主要用于高压渗析进行盐的浓缩、有机物质的分离等。,2.离子交换膜的工作原理 电渗析 在盐的水溶液(如氯化钠溶液)中置入阴、阳两个电极,并施加电场,则溶液中的阳离子将移向阴极,阴离子则移向阳极,这一过程称为电泳。如果在阴、阳两电极之间插入一张离子交换膜(阳离子交换膜或阴离子交换膜),则阳离子或阴离子会选择性地通过膜,这一过程就称为电渗
37、析。,电渗析的核心是离子交换膜。在直流电场的作用下,以电位差为推动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,实现溶液的淡化、浓缩及钝化;也可通过电渗析实现盐的电解,制备氯气和氢氧化钠等。,正极 阴离子交换膜 负极,电渗析过程原理图,3.电渗析技术应用领域 自电渗析技术问世后,其在苦咸水淡化,饮用水及工业用水制备方面展示了巨大的优势。随着电渗析理论和技术研究的深入,我国在电渗析主要装置部件及结构方面都有巨大的创新,仅离子交换膜产量就占到了世界的1/3。我国的电渗析装置主要由国家海洋局杭州水处理技术开发中心生产,现可提供200m3/d规模的海水淡化装置。,中草药有效成分的分离和精制
38、:通过电渗析一般可以把中草药提取液分离分成无机阳离子和生物碱、无机阴离子和有机酸、中性化合物和高分子化合物三部分。电渗析技术在食品工业、化工及工业废水的处理方面也发挥着重要的作用。特别是与反渗透、纳滤等精过滤技术的结合,在电子、制药等行业的高纯水制备中扮演重要角色。,实际应用的电渗析器,4.6 渗透蒸发技术,1.渗透蒸发技术和渗透蒸发膜的特点 渗透蒸发是近十几年中颇受人们关注的膜分离技术。渗透蒸发是指液体混合物在膜两侧组分的蒸气分压差的推动力下,透过膜并部分蒸发,从而达到分离目的的一种膜分离方法。可用于传统分离手段较难处理的恒沸物及近沸点物系的分离。具有一次分离度高、操作简单、无污染、低能耗等
39、特点。,渗透蒸发的实质是利用高分子膜的选择性透过来分离液体混合物。其原理如图6所示。由高分子膜将装置分为两个室,上侧为存放待分离混合物的液相室,下侧是与真空系统相连接或用惰性气体吹扫的气相室。混合物通过高分子膜的选择渗透,其中某一组分渗透到膜的另一侧。由于在气相室中该组分的蒸气分压小于其饱和蒸气压,因而在膜表面汽化。蒸气随后进入冷凝系统,通过液氮将蒸气冷凝下来即得渗透产物。渗透蒸发过程的推动力是膜内渗透组分的浓度梯度。,图6a 渗透蒸发分离示意图(真空气化),图6b 渗透蒸发分离示意图(惰性气体吹扫),2.制备渗透蒸发膜的材料(1)渗透蒸发膜材料的选择 对于渗透蒸发膜来说,是否具有良好的选择性
40、是首先要考虑的。基于溶解扩散理论,只有对所需要分离的某组分有较好亲和性的高分子物质才可能作为膜材料。如以透水为目的的渗透蒸发膜,应该有良好的亲水性,因此聚乙烯醇(PVA)和醋酸纤维素(CA)都是较好的膜材料;而当以透过醇类物质为目的时,憎水性的聚二甲基硅氧烷(PDMS)则是较理想的膜材料。,(2)制备渗透蒸发膜的主要材料 用于制备渗透蒸发膜的材料包括天然高分子物质和合成高分子物质。天然高分子膜主要包括醋酸纤维素(CA)、羧甲基纤维素(CMC)、胶原、壳聚糖等。用于制备渗透蒸发膜的合成高分子材料包括聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PSt)、聚四氟乙烯(PTFE)等非极性材料和聚乙烯醇(
41、PVA)、聚丙烯腈(PAN)、聚二甲基硅氧烷(PDMS)等极性材料。,3.渗透蒸发技术应用领域 渗透蒸发作为一种无污染、高能效的膜分离技术已经引起广泛的关注。该技术最显著的特点是很高的单级分离度,节能且适应性强,易于调节。目前渗透蒸发膜分离技术已在无水乙醇的生产中实现了工业化。与传统的恒沸精馏制备无水乙醇相比,可大大降低运行费用,且不受汽液平衡的限制。除了以上用途外,渗透蒸发膜在其他领域的应用尚都处在实验室阶段。预计有较好应用前景的领域有:工业废水处理中采用渗透蒸发膜去除少量有毒有机物(如苯、酚、含氯化合物等);在气体分离、医疗、航空等领域用于富氧操作;从溶剂中脱除少量的水或从水中除去少量有机
42、物;石油化工工业中用于烷烃和烯烃、脂肪烃和芳烃、近沸点物、同系物、同分异构体等的分离等。,4.7 气体分离膜,1.气体分离膜的分离机理 气体分离膜有两种类型:非多孔均质膜和多孔膜。它们的分离机理各不相同。(1)非多孔均质膜的溶解扩散机理 该理论认为,气体选择性透过非多孔均质膜分四步进行:气体与膜接触,分子溶解在膜中,溶解的分子由于浓度梯度进行活性扩散,分子在膜的另一侧逸出。(2)多孔膜的透过扩散机理 用多孔膜分离混合气体,是借助于各种气体流过膜中细孔时产生的速度差来进行的。,2.制备气体分离膜的材料(1)影响气体分离膜性能的因素 1)化学结构的影响 2)形态结构的影响(2)制备气体分离膜的主要
43、材料 根据不同的分离对象,气体分离膜采用不同的材料 制备。,1)H2的分离 美国Monsanto公司1979年首创Prism中空纤维复合气体分离膜,主要用于氢气的分离。其材料主要有醋酸纤维素、聚砜、聚酰亚胺等。其中聚酰亚胺是近年来新开发的高效氢气分离膜材料。它是由二联苯四羧酸二酐和芳香族二胺聚合而成的,具有抗化学腐蚀、耐高温和机械性能高等优点。,2)O2的分离富集 制备富氧膜的材料主要两类:聚二甲基硅氧烷(PDMS)及其改性产品和含三甲基硅烷基的高分子材料。PDMS是目前工业化应用的气体分离膜中最高的膜材料,美中不足的是它有两大缺点:一是分离的选择性低,二是难以制备超薄膜。此外,富氧膜大部分可
44、作为CO2分离膜使用,若在膜材料中引入亲CO2的基团,如醚键、苯环等,可大大提高CO2的透过性。同样,若在膜材料中引入亲SO2的亚砜基团(如二甲亚砜、环丁砜等),则能够大大提高SO2分离膜的渗透性能和分离性能。具有亲水基团的芳香族聚酰亚胺和磺化聚苯醚等对H2O有较好的分离作用。,2.气体分离膜的应用领域 气体分离膜是当前各国均极为重视开发的产品,已有不少产品用于工业化生产。如美国DuPont公司用聚酯类中空纤维制成的H2气体分离膜,对组成为70H2,30CH4、C2H6、C3H8的混合气体进行分离,可获得含90H2的分离效果。此外,富氧膜、分离N2,CO2,SO2,H2S等气体的膜,都已有工业
45、化的应用。例如从天然气中分离氮、从合成氨尾气中回收氢、从空气中分离N2或CO2,从烟道气中分离SO2、从煤气中分离H2S或CO2等等,均可采用气体分离膜来实现。,具体示例:水果保鲜系统,一般说来,水果在收获后,仍会继续呼吸作用,果品将逐渐劣化以至腐烂,为抑制果品的呼吸,可适当降低其保藏容器中的氧气浓度,增加二氧化碳浓度。目前广泛采用由硅氧烷膜使氧气与二氧化碳等进行交换分离的方法。,4.8 液膜,1.液膜的概念和特点 液膜分离技术是1965年由美国埃克森(Exssen)研究和工程公司的黎念之博士提出的一种新型膜分离技术。直到80年代中期,奥地利的J.Draxler等科学家采用液膜法从粘胶废液中回
46、收锌获得成功,液膜分离技术才进入了实用阶段。液膜是一层很薄的液体膜。它能把两个互溶的、但组成不同的溶液隔开,并通过这层液膜的选择性渗透作用实现物质的分离。根据形成液膜的材料不同,液膜可以是水性的,也可是溶剂型的。,液膜的特点:传质推动力大,速率高,且试剂消耗量少,这对于传统萃取工艺中试剂昂贵或处理能力大的场合具有重要的经济意义。液膜的选择性好,分离效果显著,往往只能对某种类型的离子或分子的分离具有选择性。最大缺点是强度低,破损率高,难以稳定操作,而且过程与设备复杂。,2.液膜的组成与类型(1)液膜的组成 膜溶剂:有机溶剂或水,构成膜的基体 表面活性剂:控制液膜的稳定性 添加剂/流动载体:提高膜
47、的选择性,实现分离传质的关键因素(2)液膜的类型 从形状来分类,可将液膜分为支撑型液膜和球形液膜两类,后者又可分为单滴型液膜和乳液型液膜两种。,图7 支撑型液膜示意图,1)支撑型液膜 把微孔聚合物膜浸在有机溶剂中,有机溶剂即充满膜中的微孔而形成液膜(见图7)。,此类液膜目前主要用于物质的萃取。当支撑型液膜作为萃取剂将料液和反萃液分隔开时,被萃组分即从膜的料液侧传递到反萃液侧,然后被反萃液萃取,从而完成物质的分离。这种液膜的操作虽然较简便,但存在传质面积小,稳定性较差,支撑液体容易流失的缺点。2)单滴型液膜 单滴型液膜的形状如图8所示。其结构为单一的球面薄层,根据成膜材料可分为水膜和油膜两种。图
48、8a为水膜,即 O/W/O 型,内、外相为有机物;图10b为油膜,即 W/O/W 型,内、外相为水溶液。这种单滴型液膜寿命较短,所以目前主要用于理论研究,尚无实用价值。,a b图8 单滴型液膜示意图,3)乳液型液膜 首先把两种互不相溶的液体在高剪切下制成乳液,然后再将该乳液分散在第三相(连续相),即外相中。乳状液滴内被包裹的相为内相,内、外相之间的部分是液膜。一般情况下乳液颗粒直径为0.11 mm,液膜本身厚度为110 m。根据成膜材料也分为水膜和油膜两种。如图9所示的是一种油膜,即W/O/W型乳液型液膜。它是由表面活性剂,流动载体和有机膜溶剂(如烃类)组成的,膜溶剂与含有水溶性试剂的水溶液在
49、高速搅拌下形成油包水型小液滴,含有水溶性试剂的水溶液形成内相。将此油包水型乳液分散在另一水相(料液),就形成一种油包水再水包油的复合结构,两个水相之间的膜即为液膜。料液中的物质即可穿过两个水相之间的油性液膜进行选择性迁移而完成分离过程。,图9 乳液型液膜示意图 上述三种液膜中,乳液型液膜的传质比表面最大,膜的厚度最小,因此传质速度快,分离效果较好,具有较好的工业化前景。,3.液膜分离技术应用领域(1)在生物化学中的应用 在生物化学中,为了防止酶受外界物质的干扰而常常需要将酶“固定化”。利用液膜封闭来固定酶比其他传统的酶固定方法有如下的优点:容易制备;便于固定低分子量的和多酶的体系;在系统中加入
50、辅助酶时,无需借助小分子载体吸附技术(小分子载体吸附往往会降低辅助酶的作用)。,(2)在医学中的应用 液膜在医学上用途也很广泛。如液膜人工肺、液膜人工肝、液膜人工肾以及液膜解毒、液膜缓释药物等。目前,液膜在青霉素及氨基酸的提纯回收领域也较为活跃。(3)在萃取分离方面的应用 液膜分离技术可用于萃取处理含铬、硝基化合物、含酚等的废水。我国利用液膜处理含酚废水的技术已经比较成熟。其他如石油、气体分离、矿物浸出液的加工和稀有元素的分离等方面也有应用。,谢谢大家!,人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,