大物B课后题05第五章 热力学基础.docx

上传人:牧羊曲112 文档编号:3399749 上传时间:2023-03-12 格式:DOCX 页数:14 大小:40.30KB
返回 下载 相关 举报
大物B课后题05第五章 热力学基础.docx_第1页
第1页 / 共14页
大物B课后题05第五章 热力学基础.docx_第2页
第2页 / 共14页
大物B课后题05第五章 热力学基础.docx_第3页
第3页 / 共14页
大物B课后题05第五章 热力学基础.docx_第4页
第4页 / 共14页
大物B课后题05第五章 热力学基础.docx_第5页
第5页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《大物B课后题05第五章 热力学基础.docx》由会员分享,可在线阅读,更多相关《大物B课后题05第五章 热力学基础.docx(14页珍藏版)》请在三一办公上搜索。

1、大物B课后题05第五章 热力学基础习题 5-6 2mol理想气体,例如氧气,有状态A(p1,V1)在图5.2上p-V沿一条直线变到状态B(p2,V2),该气体的热力学能的增量为多少? 解 理想气体的热力学能E=MiRT m2氧气为双原子分子 i=5 氧气的摩尔数为 Mm=2 Mi5R(T2-T1)=(p2V2-p1V1) m22 DE=E=5-7 如图5.3所示,一定质量的理想气体,沿图中斜向下的直线由状态A变化到状态B初态时压强为4.010Pa,体积为1.010m,末态的压强为2.010Pa,体积为5-3253.010-3m2,求此过程中气体对外所做的功。 解 理想气体做功的表达式为W=面积

2、 W=11(pA+pB)(VB-VA)=(2.0+4.0)105(3.0-1.0)10-3=6.0102(J) 22pdV, 其数值等于p-V图中过程曲线下所对应的5-8 如图5.4所示,系统从状态A沿ACB变化到状态B,有334J的热量传递给系统,而系统对外做功为126J. (1)若系统从状态A沿ADB变化到状态B时,系统做的功42J,问由多少热量传递给系统。 当系统从状态B沿曲线BEA返回到状态A时,外界对系统做功为84J,问系统是吸热还是放热?传递热量多少? (3)若ED-EA=167J,求系统沿AD及DB变化时,各吸收多少热量? 解 对于过程ACB EB-EA=QACB-WACB=33

3、4-126=208(J) 对于过程ADB过程 QADB=(EB-EA)+WADB=208+42=250(J) 对于过程BEA Q=(EA-EB)+WCEAB=-208-84=-292(J) 1 负号表示放热。 对于过程AD QAD=ED-EA+WADB=167+42=209(J) 对于过程DB过程 QDB=(EB-EA)-(ED-EA)=208-167=41(J) 5-9 将压强为1.01310Pa,体积为110m的氧气,自0C加热到160C,问:当压强不变时,需要多少热量?(2) 各做多少功? 解 氧气的摩尔数为 当体积不变时,需要多少热量?(3)在等压和等体过程中5-33p1V11.013

4、105110-3=4.4610-2(mol) n=mRT18.31273m氧气为双原子分子,i=5 CV= Cp=i5R=8.31=20.8(Jmol-1K-1) 227i+1R=8.31=29.1(Jmol-1K-1) 22 当压强不变时,系统所吸热为 Qp=pdV+DE=nCp(T2-T1)=4.4610-229.1(433-273)=2.08102(J) 体积不变时,系统所吸热为 QV=DE=nCV(T2-T1)=4.4610-220.8(433-273)=1.48102(J)在等压过程中所做功为 Wp=pdV=nRdT=4.4610-28.31(433-273)=59.3(J) T1T

5、2在等体积过程中,气体体积不变,故所做的功为零。 说明:功的值亦可用热力学第一定律Q=DE+W来求 DE=nCV(T2-T1)=4.4610-220.8(433-273)=1.48102(J) W=Q-DE=2.08102-1.48102=59.3(J)ppWV=QV-DE=1.48102-1.48102=05-10 如图5.5所示,1mol的氢气,在压强为1.01310Pa,温度为20C时,体积为V0,现通过以下两种过程使其达到同一状态:保持体积不变,加热使其温度升高到80C,然后令其做等温膨胀,体积变为2V0;先使其作等温膨胀至体积为2V0,然后保持体积不变,加热使其温度升高到80C,试分

6、析计算以上两中过程中,气体吸收的热量,对外所做的功和热力学能的增量。 5 2 解 氢气的等体积摩尔热容为CV=5R, 2在A-B等体过程中,气体不做功,热力学能增量为DE1 DE1=CVDT=55RDT=8.3160=1.25103(J) 22在B-C等温过程中热力学能不变,氢气的体积从V0变化到2V0,气体对外所做的功为 W1=RTln2V0=8.31353ln2=2.03103(J) V0在A-B-C过程中,气体吸收热量为 QABC=DE1+W1=1.2510+2.0310=3.2810 在A-D等温过程中,热力学能不变,气体对外做功为W2 W2=RT0ln333(J) 2V0=8.312

7、93ln2=1.69103(J) V0在D-C等体吸热的过程中气体不做功,热力学能增量为DE2 DE2=CVDT=55RDT=8.3160=1.25103(J) 22在A-D-C过程中,气体吸收热量为QABC QABC=QABC=DE2+W2=1.25103+1.69103=2.94103(J) 5-11 如图5.6所示,质量为6.410kg的氧气,在温度为是27C,体积为310m。计算下列各过程中气体所做的功(1)气体绝热膨胀至体积为1.510m;(2)气体等温膨胀至体积为1.510m,然后再等体积冷却,直到温度等于绝热膨胀后达到最后温度为止。并解释这两种过程中做功不同的原因。 解 : n=

8、2mol 绝热过程中,氧气的等体摩尔热容为CV=g-1TV=T2V2g-1得 11-23-23-2-335R,比热容比为g=1.40。 由绝热方程2V T2=T11V2g-1,Q=0 3 Vg-1310-31.40-153W1=-DE=nCV(T1-T2)=CVT11-1=28.313001-=?23.7510J()-32V21510等温过程中氧气的体积由V1膨胀到V2时所做的功为 V2310-3 W2=nRT1ln=28.31300ln=?25.74103(J) -3V115105-12 有1摩尔单原子理想气体做如图5.7所示的循环工程,求气体在循环过程中吸收的净热量和对外所做的净功,并求循

9、环效率。 解 气体经过循环所做的净功W为图1-2-3-4-1线所包围的面积,即 W=(p2-p1)(V2-V1)=(2.026-1.013)105(3.36-2.24)10-3=1.13102(J)根据理想气体的状态方程pV=MmRT得 Mp1V11.0131052.2410-3=1=27.3(K)mR8.31 Mp2V2T2=54.6(K)mRMp3V3T3=81.9(K)mRMp4V4T4=41.0(K)mRT1=在等体过程1-2,等压过程2-3中,气体所吸热量Q12、Q23分别为 Q=C(T-T)=38.31(54.6-27.3)=3.40102(J) 12V2123Q23=Cp(T3-

10、T2)=8.31(81.9-54.6)=5.67102(J) 2在等体过程3-4,等压过程4-1中,气体所放热量Q34、Q12分别为 Q34=CV(T4-T3)=38.31(41.0-81.9)=-5.10102(J) 23Q41=Cp(T1-T4)=8.31(27.3-41.0)=-2.85102(J) 2气体经历一个循环所吸收的热量之和为 Q1=Q12+Q23=9.07102(J) 气体在此循环中所放出的热量之和为 Q2=Q34+Q41=7.95102(J) 式中Q2是绝对值。 气体在此循环过程中吸收的净热量为 Q=Q1-Q2=1.12102(J) 此循环的效率为 4 h=1-Q2=1-7

11、.9510=12.5% 2Q19.081025-13 一卡诺热机的低温热源的温度为7摄氏度,效率为40%,若要将其效率提高到50%,问高温热源的温度应提高多少? 解 设高温热源的温度分别为T1和T1,低温热源的温度为T2,则有 h=1-上式变形得 T1=T2T,h=1-2 T1T1T2T,T1=2 1-h1-h高温热源温度需提高的温度为 DT=T-T1=T2T280280-2=-=93.3(K) 1-h1-h1-0.51-0.45-14 汽油机可近似地看成如图5.8所示的理想循环,这个循环也做奥托循环,其中BC和DE是绝热过程,试证明: 此循环的效率为h=1-态B,C,D,E的温度; 若工作物

12、质的比热容比为g,在状态C,D和E,B的体积分别为VC、VB,则上述效TE-TB,式中TB、TC、TD、TE,分别为 工作物质在状TD-TCV率也可以表示为h=1-CVBg-1证明 该循环仅在CD过程中吸热,EB过程中放热,则热机效率为 m h=1-QEBQCD=1-mmCV(TE-TB)=1-mCV(TD-TC)TE-TB (a) TD-TC(2)在过程BC,DE中,根据绝热方程TV g-1=C有 TBVBg-1=TCVCg-1TEVEg-1=TDVDg-1,VB=VE,VC=VD 由以上二式相减,可得 TE-TBVC= TD-TCVBg-15 把(b)代入(a)得 g-1 h=1-VCVB5-15 设有一理想气体为工作物质的热机,其循环如图5.9所示,试证明其效率为 V1 h=1-gV-12p 1p-12证明 该热机循环效率为 h=1-Q2Q=1-QBC 1QCA其中 QmBC=Cp(TC-TB)mmQCA=mCV(TA-TC)所以 TB h=1-gT-1C-TBT=1-gTCA-TCT AT-1C在等压过程BC中和等体过程CA中分别有TBTCTATV=V,=C,代入上式得 12p1p2V1- h=1-gV12p 1p-12证毕。 6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号