《如何课堂教学中渗透数形结合的思想方法.docx》由会员分享,可在线阅读,更多相关《如何课堂教学中渗透数形结合的思想方法.docx(2页珍藏版)》请在三一办公上搜索。
1、如何课堂教学中渗透数形结合的思想方法如何课堂教学中渗透数形结合的思想方法 数学思想方法很多其中数形结合是小学数学中常用的、重要的一种数学思想方法。数形结合是通过数形之间的相互转化,把抽象的数量关系,通过形象化的方法,转化为图形,从图形中直观地发现数量之间存在的内在联系,解决问题。应用数形结合的思想方法,既能培养学生的形象思维能力,又促进逻辑思维能力的发展。下面就我在教学中如何渗透数形结合的思想方法的做法和体会: 一、在观察中渗透数形结合的思想。观察是学生学习活动的基础,是学生获取知识的开始。教师在低年级就应该有意识地让学生观察数与形之间的联系。如:如在教学进位加法时,“42+58= ”我通过演
2、示42根小棒加58根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过演示小棒的方法教学,2和8加起来时10,又是1捆,4捆加5捆再加刚刚的1捆是10捆,可以捆成一大捆即100。学生的整个观察过程展现数与形之间的内在关系,帮助学生理解的进位加法的意义。同时激发了学生的兴趣。 二、在操作中渗透数形结合的思想。小学生思维以具体形象为主,教材为学生提供了许多实践操作的机会,我们要重视学生操作,真正的放手让学生操作。让操作与思维联系起来,让知识在学生操作中产生。比如,低年级有一道题:“小兔从家出发,已经走了52米,这时看到路标上写着离商店还有21米,小兔家离学校有多少米?”我发现有的学
3、生能列出52+21=73,但是他们不能清晰地解释为什么要两个数相加。于是教学时,先让学生在作业本上用笔画出整条路线,再用笔尖模仿小兔的行走路线到路边的广告牌时,停下别动。问学生:“离商店还有21米”是那一段?为什么52+21=73的问题就迎刃而解了,重要的是学生在操作中体验领悟到了数形结合的思想。 高年级解决问题的题型中,用线段图帮助分析题意。例如:“小强每分钟走65米,小丽每分钟走70米,经过4分钟,两人在校门口相遇,他们两家相距多远?” 我让学生画出线段图,通过画线段图帮助学生分析题中的数量关系,理清解题思路。从线段图中,可以清楚地看到他们两家相距的路程就是小强家到学校的路程加上小丽家到学
4、校的路程。由于小强到学校用了4分钟,即4个65米,就是654米。小丽到学校的路程用了4分钟,每分钟70米,即4个70米,就是704米,他们两家的路程就是654704米;也可以这样看:他们两个同时走1分钟的路程是米,同时走4分钟的路程是4米。通过了数形结合的思想方法,能轻松地让学生理解数量关系。我认为老师要分阶段、有目的地培养学生画图分析数量关系。如果从低年级到高年级,教师都注重培养学生分析已知条件和问题,从低年级的看图、说图意、画基本简单的线段图,到中高年级画稍为复杂的线段图、较复杂的线段图。学生的解题方法、解题能力都会得到提高。 通过数形结合,有助于学生对数学知识的记忆。帮助学生理解抽象的数量关系、数学概念,使问题简明直观,甚至使一些较难的问题迎刃而解。既培养学生的形象思维能力,又促进逻辑思维能力的发展。