应变花计算公式.docx

上传人:小飞机 文档编号:3503544 上传时间:2023-03-13 格式:DOCX 页数:8 大小:39.68KB
返回 下载 相关 举报
应变花计算公式.docx_第1页
第1页 / 共8页
应变花计算公式.docx_第2页
第2页 / 共8页
应变花计算公式.docx_第3页
第3页 / 共8页
应变花计算公式.docx_第4页
第4页 / 共8页
应变花计算公式.docx_第5页
第5页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《应变花计算公式.docx》由会员分享,可在线阅读,更多相关《应变花计算公式.docx(8页珍藏版)》请在三一办公上搜索。

1、应变花计算公式1. 概述 平面应变状态:即受力构件表面一点处的应变情况。 测试原理: 一般最大应变往往发生在受力构件的表面。通常用应变仪测出受力构件表面一点处三个方向的线应变值,然后确定该点处的最大线应变和最小应变及其方程。 2. 公式推导: 选定坐标系为xoy,如图示 设0点处,为正。 求任意方向, 方向。 叠加法:求 方向的线应变 和切应变 规定逆时针方向为正)的线应变 和切应变 的线应变求 的切应变 即 方向的直角改 坐标轴偏转的角度 以 代替式中的,求得 坐标轴偏转角度: 3. 结论 已知 可求得任意方向 的已知 ,求得 主应变和主应变方向 比较上述公式,可见 故:4. 应变圆 5.

2、应变的实际测量 用解析法或图解法求一点处的主应变时,首先必须已知接测量时,的线应变 可以测试,但 。 代入 ,然而用应变仪直 不易测量。所以,一般是先测出任选三个方向然后利用一般公式,将得出: 联解三式,求出,于是再求出主应变的方向与数值 由 式求出 ,当 时 与二、四相限的角度相对应。 6. 直角应变花测量 为了简化计算,三个应变选定三个特殊方向 测得:求得: ,代入 一般公式 故 讨论: 若6. 等角应变花测量 与二、四相限的角度相对应。见P257、7.21题 一般公式: 测定值: 代入式得: 主应变方向: 故: 于是由主应变公式: ,穿过二,四相限.见P258,7.22题 Example

3、 1. 用直角应变花测得一点的三个方向的线应变 Find:主应变及其方向 Solution: 故 过二、四相限。 Example2. 若已测得等角应变花三个方向的线 Solution: 即: 试求主应变及其方向 应力测量 (measurement of stress) 测量物体由于外因或内在缺陷而变形时,在它内部任一单位截面积上内外两方的相互作用力。应力是不能直接测量的,只能是先测出应变,然后按应力与应变的关系式计算出应力。若主应力方向已知,只要沿着主应力方向测出主应变,就可算出主应力。各种受力情况下的应变值的测量方法见表1。 轴向拉伸(或压缩)时,沿轴向力方向粘贴应变片(表l之14),测出应

4、变,按单向虎克定律算出测点的拉(压)应力=E。式中为应变,E为弹性模量。 弯曲时在受弯件的上下表面上粘贴应变片(见表1之56),测出应变e,可计算弯曲应力。 扭转时沿与圆轴母线成45 角的方向贴片(表1之79),测出主应变em,再代入虎克定律公式算出主应力45o ,即得最大剪应力rmax : 。式中为泊松比。 拉(压)、弯曲、扭转,其中两种或三种力的联合作用下,不同测量要求的应变值测量方法分别见表1的1014。 主应力方向未知时的应力测量如图1所示。在该测点沿与某坐标轴X夹角分别为1 、2 和3 的3个方向,各粘贴一枚应变片,分别测出3个方向的应变1 2 和3 根据下式 可解出x ,y 和z

5、再代入下式求出主应变1 、2 和主方向与x轴夹角a: 最后,再根据广义虎克定律公式 求出主应力1 、2 和Tmax 。 实际上为了简化计算,3枚应变片与z轴的夹角a1 、a2 和a3 总是选取特殊角,如0o 、45o 、60o 、90o 和120o 并将3枚应变片的敏感栅制在同一基底上,形成应变花。常用的应。变花有直角应变花(00一45。一90。)和等角应变花(O 一60 一120o )。不同形式的应变花的计算公式见表2。 用应变片测量的应变值一般是很小的,因而电阻值的变化同样是很小的。为此,有必要把应变计连接到一定的测量系统中,以精确测定应变片电阻值的变化。用应变片测量应变的测量系统框图见图

6、2。 电阻应变测量法是实验应力分析中应用最广的一种方法。电阻应变测量方法测出的是构件上某一点处的应变,还需通过换算才能得到应力。根据不同的应力状态确定应变片贴片方位,有不同的换算公式。 8.7.1 单向应力状态 在杆件受到拉伸(或压缩)情况下,如图8-31所示。此时只有一个主应力s1,它的方向是平行于外加载荷F的方向,所以这个主应力s1的方向是已知的,该方向的应变为el。而垂直于主应力s1方向上的应力虽然为零,但该方向的应变e20,而是e2=-el。由此可知:在单向应力状态下,只要知道应力s1的方向,虽然s1的大小是未知的,可在沿主应力s1的方向上贴一个应变片,通过测得el,就可利用s1=Ee

7、1公式求得s1。 8.7.2 主应力方向巳知平面应力状态 平面应力是指构件内的一个点在两个互相垂直的方向上受到拉伸(或压缩)作用而产生的应力状态,如图8-31所示。 图中单元体受已知方向的平面应力s1和s2作用,在X和Y方向的应变分别为 s1作用:X方向的应变el为s1/E Y方向的应变e2为-s1/E s2作用:Y方向的应变e2为e2/E X方向的应变el为-e2/E 由此可得X方向的应变和Y方向的应变分别为 上式变换形式后可得 由此可知:在平面应力状态下,若已知主应力s1或s2的方向(s1与s2相互垂直),则只要沿s1和s2方向各贴一片应变片,测得l和2后代入式,即可求得s1和s2值。 8

8、.7.3 主应力方向未知平面应力状态 当平面应力的主应力s1和2的大小及方向都未知时,需对一个测点贴三个不同方向的应变片,测出三个方向的应变,才能确定主应力s1和s2及主方向角q三个未知量。 图8-33表示边长为x和y、对角线长为l的矩形单元体。设在平面应力状态下,与主应力方向成q角的任一方向的应变为,即图中对角线长度l的相对变化量。 由于主应力sx、sy的作用,该单元体在X、Y方向的伸长量为x、y,如图8-33(a)、(b)所示,该方向的应变为ex=x/x、ey=y/y;在切应力xy作用下,使原直角XOY减小gxy,如图8-33(c)所示,即切应变gxy=x/y。这三个变形引起单元体对角线长

9、度l的变化分别为xcosq、ysinq、ygxy cosq,其应变分别为excos2q、eysin2q、gxysinqcosq。当ex、ey、gxy同时发生时,则对角线的总应变为上述三者之和,可表示为 利用半角公式变换后,上式可写成 由式 (8-75)可知e与ex、ey、gxy之间的关系。因ex、ey、gxy未知,实际测量时可任选与X轴成q1、q2、q3三个角的方向各贴一个应变片,测得e1、e2、e3连同三个角度代入式(8-75)中可得 由式(8-76)联立方程就可解出ex、ey、gxy。再由ex、ey、gxy可求出主应变e1、e2和主方向与X轴的夹角q,即 将上式中主应变e1和e2代入式(8-73)中,即可求得主应力。 在实际测量中,为简化计算,三个应变片与X轴的夹角q1、q2、q3总是选取特殊角,如 0、45和90或0、60和120角,并将三个应变片的丝栅制在同一基底上,形成所谓应变花。图8-34所示是丝式应变花。设应变花与X轴夹角为q1=0,q2=45、q3=90,将此q1、q2、q3值分别代人式(8-76)得 由式(8-78)可得 将式(8-79)代入式(8-77)可得主应变e1、e2和主应变方向角q的计算式为 将式(8-80)代入式(8-81)得应力计算公式为 对q1=0、q2=60、q3=120的应变花,主应变e1、e2和主应变方向角及主应力s1和s2计算公式为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号