《两角和与差的三角函数与二倍角公式习题课课件.ppt》由会员分享,可在线阅读,更多相关《两角和与差的三角函数与二倍角公式习题课课件.ppt(68页珍藏版)》请在三一办公上搜索。
1、2023年3月16日星期四,王山喜-和差倍角三角函数习题课,1,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,2,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,3,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,4,二倍角公式中的sin2,cos2能否用tan来表示?,这三个公式常被称为“万能公式”,提示:能.,齐次型!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,5,1.cos33cos87+sin33cos177的值为()(A)(B)(C)(D)【解析】选B.cos33cos87+sin33cos177=cos33sin3-sin33
2、cos3=sin(3-33)=-sin30=.,变结构与凑结构,逆用公式!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,6,2.已知tan(+)=3,tan(-)=5,则tan2=()(A)(B)(C)(D)【解析】选D.tan2=tan(+)+(-),变角与凑角!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,7,3.如果cos2-cos2=a,则sin(+)sin(-)等于()(A)(B)(C)-a(D)a【解析】选C.sin(+)sin(-)=(sincos+cossin)(sincos-cossin)=sin2cos2-cos2sin2=(1-cos2)c
3、os2-cos2(1-cos2)=cos2-cos2=-a.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,8,4.若 则2sin2-cos2=_.【解析】由 得,2+2tan=3-3tan,答案:,齐次型!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,9,5.化简:=_.【解析】答案:,合一变形!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,10,1.两角和与差的三角函数公式的理解(1)正弦公式概括为“正余,余正符号同”“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”
4、.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,11,(3)二倍角公式实际就是由两角和公式中令=可得.特别地,对于余弦:cos2=cos2-sin2=2cos2-1=1-2sin2,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.弦切互化公式(万能公式)对于弦切互化 有时也起到简化解题过程的作用.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,12,三角函数式的化简【例1】化简下列各式:(1)【审题指导】对于含有根式的三角函数,化简一般采用倍角公式转化为完全平方式后开根号,若含有常数可采用倍角公式将常数化掉.,2023年3月16日星
5、期四,王山喜-和差倍角三角函数习题课,13,【自主解答】(1)原式因为0,所以所以所以原式=-cos.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,14,=-2cos4+2(cos4-sin4)=-2sin4.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,15,【规律方法】三角函数的给角求值或化简,所给角往往是非特殊角.解决的基本思路是:,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,16,【变式训练】化简:【解析】原式,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,17,三角函数的求值【例2】(2011东城模拟)已知-2cos+si
6、n=0,(,).(1)求sin(+);(2)求tan(+).【审题指导】由已知结合同角三角函数关系式可得sin,cos,tan,从而再利用两角和的公式可得(1)(2).,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,18,【自主解答】(1)由-2cos+sin=0即sin=2cos.又sin2+cos2=1得 又(,),(2)由(1)可得tan=2,,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,19,【规律方法】三角函数的求值是三角变换中常见题型,它分为非条件求值(特殊的化简)和条件求值.条件求值中又有给值求值和给值求角,此类问题的关键是把待求角用已知角表示:(1
7、)已知角为两个时,待求角一般表示为已知角的和与差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”关系.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,20,(3)对于角还可以进行配凑,常见的配凑技巧有:=(+)-=-(-)=(+)+(-),对于给值求角,关键是求该角的某一个三角函数值,再根据范围确定角.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,21,【互动探究】若将本例中的范围修改为(0,),则如何求cos(-2)和sin(-2)?【解析】由本例可得:又(0,),故,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,22,202
8、3年3月16日星期四,王山喜-和差倍角三角函数习题课,23,【变式训练】已知0,且cos(-)=求cos(+)的值.【解析】0,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,24,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,25,三角函数的给值求角【例】已知(1)求sin的值;(2)求的值.【审题指导】解决本题的关键是角的变换,利用相应公式求解.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,26,【规范解答】(1),万能公式,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,27,(2)又由 可知,由 得(或求 得),2023年3月16日
9、星期四,王山喜-和差倍角三角函数习题课,28,【规律方法】1.三角函数的给值求角问题,一般思路是:,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,29,2.求角的某一三角函数值时,应选择在该角所在范围内是单调的函数.这样,由三角函数值才可以惟一确定角.如:若角的范围是(0,),选正、余弦皆可;若角的范围是(0,),选余弦较好;若角的范围为 选正弦较好.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,30,【变式备选】(2011三亚模拟)ABC的三内角分别为A、B、C,向量若=1+cos(A+B),求C.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,3
10、1,【解析】=(sinAcosB+sinBcosA)=sin(A+B)=1+cos(A+B),sinC=1-cosC,sinC+cosC=1,即2sin(C+)=1,sin(C+)=又C(0,),2023年3月16日星期四,王山喜-和差倍角三角函数习题课,32,三角函数综合应用【例】设函数f(x)=(sinx+cosx)2+2cos2x(0)的最小正周期为(1)求的值;(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移 个单位长度得到,求y=g(x)的单调增区间.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,33,【审题指导】本例可将原函数平方展开,利用同角三角函数基
11、本关系式及倍角公式和两角和与差的逆用化为一个角的一个三角函数,再利用周期可求,利用图象变换可求g(x)的单调增区间.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,34,【规范解答】(1)f(x)=sin2x+cos2x+2sinxcosx+1+cos2x=sin2x+cos2x+2=sin(2x+)+2,依题意得 故(2)依题意得由解得故g(x)的单调增区间为,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,35,【规律方法】高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y=Asin(x+)
12、的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,36,【变式备选】已知f(x)=sin2x(0)的最小正周期为.求函数f(x)在区间 上的值域.【解析】=-cos2x,其周期为.=1.f(x)=-cos2x+.当x0,时,2x0,.cos2x-1,1.f(x)0,1.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,37,两角和与差及倍角公式解答题的答题技巧【典例】(12分)(2010北京高考)已知函数f(x)=2cos2x+sin2x.(1)求 的值;(2)求f(x)的最大值和最小值.,
13、【审题指导】利用倍角公式展开和同角三角函数关系转化求解,也可利用倍角公式逆用转化求解.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,38,【规范解答】方法一:4分(2)f(x)=2(2cos2x-1)+(1-cos2x)=3cos2x-1,xR.cosx-1,1,cos2x0,1,10分当cosx=1时,f(x)max=2.当cosx=0时,f(x)min=-1.12分,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,39,方法二:(1)由f(x)=2cos2x+sin2x得 4分(2)xR,cos2x-1,1.9分 12分,2023年3月16日星期四,王山喜-和差
14、倍角三角函数习题课,40,【失分警示】本题考查二倍角公式的正用、逆用及其性质,属容易题,掌握好公式是关键,其失分原因主要有:一是特殊角的三角函数值记不清,二是运算错误造成失分.解决此类问题的失分点主要是:1.不能对所给函数式准确化简造成失分.2.求最值或值域问题忽略相应变量的取值范围造成失分.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,41,【变式训练】已知函数f(x)=sin2x+sinxsin(x+)(0)的最小正周期为.(1)求的值;(2)求函数f(x)在区间0,上的取值范围.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,42,【解析】,2023年3月1
15、6日星期四,王山喜-和差倍角三角函数习题课,43,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,44,1.(2011福州模拟)将函数 的图象向左平移m个单位(m0),若所得图象对应的函数为偶函数,则m的最小值是()(A)(B)(C)(D)【解析】选A.由 向左平移m个单位后得g(x)=2sin(x-+m),若g(x)是偶函数,则m-=k+(kZ),m=k+(kZ),mmin=.,针对训练!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,45,2.(2010陕西高考)对于函数f(x)=2sinxcosx,下列选项中正确的是()(A)f(x)在 上是递增的(B)f(x)
16、的图象关于原点对称(C)f(x)的最小正周期为2(D)f(x)的最大值为2【解析】选B.f(x)=2sinxcosx=sin2x,其增区间为 kZ且f(x)是奇函数,图象关于原点对称,最小正周期T=,f(x)max=1,故选B.,针对训练!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,46,3.(2011银川模拟)已知 且sin-cos1,则sin2=()【解析】选A.sin=sin-cos1,cos0,在第二象限,,针对训练!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,47,4.(2011杭州模拟)函数y=sinx+cosx(xR)的值域为_.【解析】由y=
17、2sin(x+)得值域为-2,2.答案:-2,2,针对训练!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,48,5.(2011南通模拟)满足 的锐角x=_.【解题提示】利用两角和的余弦公式的逆用化为一个角的三角函数后解方程可得.【解析】由题意知即 故 又因为x为锐角,故答案:,针对训练!,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,49,一、选择题(每小题4分,共20分)1.(2011山师大附中模拟)若 则的值为()【解析】选D.故,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,50,2.(cos15-cos75)(sin75+sin15)=()(
18、A)(B)(C)(D)1【解析】选C.原式=(cos15-sin15)(cos15+sin15)=cos215-sin215=cos30=.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,51,3.已知 则f()取得最大值时的值是()(A)(B)(C)(D),2023年3月16日星期四,王山喜-和差倍角三角函数习题课,52,【解析】选B.当 即 时,函数f()取得最大值.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,53,4.已知函数y=f(x)sinx的一部分图象如图所示,则函数f(x)可以是()(A)2sinx(B)2cosx(C)-2sinx(D)-2cos
19、x【解析】选D.由图象可知:f(x)sinx=sin(2x-)=-sin2x=-2sinxcosx,f(x)可以是-2cosx.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,54,5.(2011杭州模拟)已知 且x,y为锐角,则tan(x-y)=()【解题提示】解答本题的关键是利用已知条件求出cos(x-y)的值,然后结合x,y的范围及同角三角函数关系式求出相应的值.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,55,【解析】选B.由两边平方得 由 两边平方得+得 且xy,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,56,2023年3月16日星期
20、四,王山喜-和差倍角三角函数习题课,57,【方法技巧】两角和与差公式的逆用本题主要是三角函数和、差公式的逆用,关键在于构造公式,方法是通过两式平方相加减,利用平方关系式和两角和、差的正余弦,可以起到消元、化简的作用.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,58,二、填空题(每小题4分,共12分)6.ABC中,则C=_.【解题提示】解答本题的关键是首先利用两角和的正切公式及已知条件求出tan(A+B)的值,进而求出A+B,然后结合三角形内角和定理求出C的值.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,59,【解析】tanC=-tan(A+B)=1,而C(0
21、,),故答案:,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,60,7.若 则=_.【解析】答案:3,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,61,8.(2011浙大附中模拟)关于x的方程-a=0在(0,)内有解,则a的取值范围是_.【解题提示】注意到已知式子的结构,易联想sinxcosx与sinx+cosx有联系,即(sinx+cosx)2=1+2sinxcosx,因此可通过“换元”,将三角式转化为代数式,从而使问题解决.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,62,【解析】由已知得设sinx+cosx=t,则当x(0,)时,答案:,+
22、),2023年3月16日星期四,王山喜-和差倍角三角函数习题课,63,三、解答题(每小题9分,共18分)9.(2011福州模拟)已知函数f(x)=sin2x+2sinxsin(-x)+3sin2(-x)(1)若 求f(x)的值;(2)求函数f(x)最小正周期及单调递减区间.【解析】(1)f(x)=sin2x+2sinxcosx+3cos2x,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,64,(2)f(x)=sin2x+2sinxcosx+3cos2xf(x)的最小正周期为由 kZ,解得 kZ,f(x)的单调递减区间为 kZ.,2023年3月16日星期四,王山喜-和差倍角三角函数
23、习题课,65,10.已知:(aR,a为常数),(1)若xR,求f(x)的最小正周期;(2)若f(x)在 上最大值与最小值之和为3,求a的值;(3)在(2)条件下由y=sinx的图象经过怎样的变换后得到y=f(x)的图象,写出其变换步骤.【解析】(1)最小正周期T=.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,66,(2)x,f(x)max=a+3,f(x)min=a.由已知得a+3+a=3,a=0.,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,67,【探究创新】(10分)据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月根据(0,x为月份)的模型波动,已知3月份达最高价8千元,7月份价格最低为4千元.该商品每件的售价为g(x)(x为月份)且满足g(x)=f(x-2)+2.(1)求f(x),g(x)的解析式;(2)一年内几个月能盈利?,2023年3月16日星期四,王山喜-和差倍角三角函数习题课,68,【解析】(1)由 题意得且T=8,故(2)要使商家盈利则只需g(x)f(x),即即即,