《空间向量章末复习提升课课件.ppt》由会员分享,可在线阅读,更多相关《空间向量章末复习提升课课件.ppt(55页珍藏版)》请在三一办公上搜索。
1、章末复习提升课,第三章,空间向量与立体几何,空间向量基本定理,问题展示,(,选修,2-,1,P97,习题,3.1A,组,T2),如图,平行六面,体,ABCD,-,A,1,B,1,C,1,D,1,中,,AC,与,BD,的交点为,M,.,设,A,1,B,1,a,,,A,1,D,1,b,,,A,1,A,c,,则下列向量中与,B,1,M,相等的向量是,(,),A.,1,2,a,1,2,b,c,B.,1,2,a,1,2,b,c,C.,1,2,a,1,2,b,c,D.,1,2,a,1,2,b,c,【解析】,B,1,M,B,1,B,BM,B,1,B,1,2,BD,B,1,B,1,2,(,BA,AD,),A,
2、1,A,1,2,A,1,B,1,1,2,A,1,D,1,1,2,a,1,2,b,c,.,故选,A.,【答案】,A,在平行六面体,ABCD,-,A,1,B,1,C,1,D,1,中,,A,1,B,1,a,,,A,1,D,1,b,,,A,1,A,c,,若,B,1,M,1,2,a,1,2,b,c,,则,M,的位置为,(,),A,?,ADD,1,A,1,的对角线交点,B,?,ABCD,的对角线的交点,C,?,DCC,1,D,1,的对角线的交点,D,点,D,的位置,【解析】,因为,B,1,M,1,2,a,1,2,b,c,.,所以,A,1,M,A,1,B,1,B,1,M,a,1,2,a,1,2,b,c,1,
3、2,(,a,b,),c,1,2,A,1,C,1,c,A,1,C,1,C,1,C,1,2,A,1,C,1,A,1,C,1,2,CA,.,即,A,1,M,A,1,C,1,2,CA,,,所以,CM,1,2,CA,.,所以,M,为,CA,的中点,即,M,为,?,ABCD,的对角线的交点故选,B.,【答案】,B,平行六面体,ABCD,-,A,1,B,1,C,1,D,1,中,,AC,与,BD,的交点为,M,,,P,是直线,DD,1,上一点若,B,1,M,平面,A,1,CP,.,求,P,点的位置,【解】,取基底,AB,,,AD,,,AA,1,a,,,b,,,c,则,B,1,M,B,1,B,BM,AA,1,1
4、,2,(,BA,BC,),AA,1,1,2,AB,1,2,AD,1,2,a,1,2,b,c,.,设,DP,DD,1,c,.,所以,CP,CD,DP,a,c,.,CA,1,CB,BB,1,B,1,A,1,b,c,a,.,因为,B,1,M,平面,A,1,CP,,故存在,x,,,y,R,,,使,B,1,M,xCP,yCA,1,,,即,1,2,a,1,2,b,c,x,(,a,c,),y,(,b,c,a,),(,x,y,),a,yb,(,x,y,),c,.,所以,?,?,?,?,?,?,?,1,2,x,y,1,2,y,1,x,y,.,解得,x,1,,,y,1,2,,,1,2,.,所以当,P,在,D,1,
5、D,的延长线上,且,|,PD,|,1,2,|,DD,1,|,时,,B,1,M,平,面,A,1,CP,.,空间向量的运算,问题展示,(,选修,2-,1,P92,练习,T1),如图,在正三棱柱,ABC,-,A,1,B,1,C,1,中,若,AB,2,BB,1,,则,AB,1,与,C,1,B,所成角的大,小为,(,),A,60,B,90,C,105,D,75,【解析】,法一:,(,基底法,),:取基底,BA,,,BC,,,BB,1,a,,,b,,,c,设,BB,1,1,,则,|,a,|,|,b,|,2,,,|,c,|,1.,a,,,b,60,,,c,a,,,c,b,.,AB,1,c,a,,,BC,1,
6、b,c,.,所以,AB,1,BC,1,(,c,a,),(,b,c,),c,b,c,2,a,b,a,c,0,1,2,2,2,cos 60,0,0.,所以,AB,1,BC,1,,即,AB,1,与,C,1,B,所成角的大小为,90,,选,B.,法二:,(,坐标法,),:,以,AB,的中点为坐标原点建立如图的空间直,角坐标系,且设,BB,1,2,,则,AB,2,2.,所以,A,(,2,,,0,,,0),,,B,(,2,,,0,,,0),,,B,1,(,2,,,0,,,2),,,C,1,(0,,,6,,,2),所以,AB,1,(2,2,,,0,,,2),,,BC,1,(,2,,,6,,,2),AB,1,
7、BC,1,2,2,(,2),0,6,2,2,0.,所以,AB,1,BC,1,,即,AB,1,与,C,1,B,所成角的大小为,90,,选,B.,【答案】,B,如图,,在正三棱柱,ABC,-,A,1,B,1,C,1,中,,AB,1,BC,1,,,P,是,AA,1,中点,(1),求平面,PBC,1,将三棱柱分成的两部分的体,积之比;,(2),求平面,PBC,1,与平面,ABC,所成二面角的正切值,【解】,(1),以,AB,的中点,O,为坐标原点,,建,立如图的空间直角坐标系,设三棱柱的底面,边长为,a,,高为,b,,,则,A,?,?,?,?,?,?,a,2,,,0,,,0,,,B,?,?,?,?,?
8、,?,a,2,,,0,,,0,,,B,1,?,?,?,?,?,?,a,2,,,0,,,b,,,C,1,?,?,?,?,?,?,0,,,3,2,a,,,b,.,所以,AB,1,(,a,,,0,,,b,),,,BC,1,?,?,?,?,?,?,a,2,,,3,2,a,,,b,.,因为,AB,1,BC,1,,,所以,AB,1,BC,1,0.,即,a,2,2,b,2,0,,所以,a,2,b,.,又,B,到平面,ACC,1,P,的距离,d,3,2,a,,,P,是,AA,1,中点,所以,V,四棱锥,B,-,ACC,1,P,1,3,S,梯形,ACC,1,P,d,1,3,1,2,?,?,?,?,?,?,b,2
9、,b,a,3,2,a,3,8,a,2,b,,,则平面,PBC,1,分三棱柱另一部分几何体的体积为,V,V,三棱柱,ABC,-,A,1,B,1,C,1,V,四棱锥,B,-,ACC,1,P,3,4,a,2,b,3,8,a,2,b,3,8,a,2,b,.,所以平面,PBC,1,将三棱柱分成两部分的体积之比为,1,1.,(2),由,(1),知,a,2,b,,令,b,2,,则,a,2,2.,所以,B,(,2,,,0,,,0),,,C,1,(0,,,6,,,2),,,P,(,2,,,0,,,1),所以,BP,(,2,2,,,0,,,1),,,BC,1,(,2,,,6,,,2),设平面,PBC,1,的法向量
10、为,n,1,(,x,,,y,,,z,),则,?,?,?,?,?,n,1,BP,0,n,1,BC,1,0,,即,?,?,?,?,?,2,2,x,z,0,2,x,6,y,2,z,0,.,令,x,1,,得,z,2,2,,,y,3.,所以,n,1,(1,,,3,,,2,2),取平面,ABC,的一个法向量为,n,2,(0,,,0,,,1),所以,cos,n,1,,,n,2,n,1,n,2,|,n,1,|,|,n,2,|,2,2,2,3,6,3,,,所以,sin,n,1,,,n,2,3,3,.,所以,tan,n,1,,,n,2,sin,n,1,,,n,2,cos,n,1,,,n,2,3,3,6,3,2,2
11、,.,即平面,PBC,1,与平面,ABC,所成角的正切值为,2,2,.,如图所示,正三棱柱,ABC,-,A,1,B,1,C,1,的所有棱长都为,2,,,D,为,CC,1,的中点,(1),求证:,AB,1,平面,A,1,BD,;,(2),求二面角,(,锐角,),B,-,A,1,D,-,C,的余弦,【解】,(1),证明:如图所示,取,BC,的中点,O,,,连接,AO,.,因为,ABC,为正三角形,,所以,AO,BC,.,因为在正三棱柱,ABC,-,A,1,B,1,C,1,中,,平面,ABC,平面,BCC,1,B,1,,,所以,AO,平面,BCC,1,B,1,.,取,B,1,C,1,的中点,O,1,
12、,以,O,为原点,以,OB,,,OO,1,,,OA,为,x,轴,,y,轴,,z,轴的正方向建立空间直角坐标系,,则,B,(1,,,0,,,0),,,D,(,1,,,1,,,0),,,A,1,(0,,,2,,,3),,,A,(0,,,0,,,3),,,B,1,(1,,,2,,,0),BA,1,(,1,,,2,,,3),,,BD,(,2,,,1,,,0),设平面,A,1,BD,的法向量为,n,(,x,,,y,,,z,),,,因为,n,BA,1,,,n,BD,,,故,?,?,?,?,?,n,BA,1,0,,,n,BD,0,?,?,?,?,?,?,x,2,y,3,z,0,,,2,x,y,0.,令,x,
13、1,,得,y,2,,,z,3,,,故,n,(1,,,2,,,3),为平面,A,1,BD,的一个法向量,,而,AB,1,(1,,,2,,,3),,所以,AB,1,n,,即,AB,1,平面,A,1,BD,.,(2),因为,A,(0,,,0,,,3),,,C,(,1,,,0,,,0),,,C,1,(,1,,,2,,,0),所以,CA,(1,,,0,,,3),,,CC,1,(0,,,2,,,0),设平面,ACC,1,A,1,的法向量为,m,(,x,1,,,y,1,,,z,1,),则,?,?,?,?,?,m,CA,0,m,CC,1,0.,即,?,?,?,?,?,x,1,3,z,1,0,2,y,1,0,.
14、,令,z,1,1,,则,m,(,3,,,0,,,1),由,(1),知,平面,A,1,BD,的一个法向量为,n,(1,,,2,,,3),所以,cos,m,,,n,m,n,|,m,|,|,n,|,3,1,0,2,1,(,3,),(,3,),2,0,2,1,2,1,2,2,2,(,3,),2,6,4,.,所以所求的二面角,(,锐角,B,-,A,1,D,-,C,),的余弦值为,6,4,.,空间向量的综合应用,问题展示,(,选修,2-,1 P119,复习参考题,B,组,T3),如图,在四,棱锥,S,-,ABCD,中,底面,ABCD,是直角梯形,,AB,垂直于,AD,和,BC,,侧棱,SA,底面,ABCD
15、,,且,SA,AB,BC,1,,,AD,0.5.,(1),求四棱锥,S,-,ABCD,的体积;,(2),求面,SCD,与面,SAB,所成二面角的余弦值,【解】,(1),V,S,-,ABCD,1,3,S,梯形,ABCD,SA,.,1,3,1,2,(0.5,1),1,1,1,4,.,(2),由题意可建立如图的空间直角坐标系,,由,SA,AB,BC,1.,AD,0.5,得,A,(0,,,0,,,0),,,B,(0,,,1,,,0),,,C,(1,,,1,,,0),,,D,?,?,?,?,?,?,1,2,,,0,,,0,,,S,(0,,,0,,,1),则平面,SAB,的一个法向量为,AD,?,?,?,
16、?,?,?,1,2,,,0,,,0,.,SD,?,?,?,?,?,?,1,2,,,0,,,1,,,SC,(1,,,1,,,1),设平面,SCD,的法向量为,n,(,x,,,y,,,z,),由,?,?,?,?,?,n,SD,0,,,n,SC,0,得,?,?,?,?,?,1,2,x,z,0,x,y,z,0.,令,z,1,,得,x,2,,,y,1.,所以,n,(2,,,1,,,1),所以,cos,AD,,,n,AD,n,|,AD,|,|,n,|,1,2,2,0,(,1,),0,1,1,2,6,6,3,.,即面,SCD,与面,SAB,所成二面角的余弦值为,6,3,.,如图,1,,在,Rt,ABC,中,
17、,C,90,,,AC,4,,,BC,2.,E,,,F,分别在,AC,和,AB,上,且,EF,CB,.,将它沿,EF,折起,且平面,AEF,平面,EFBC,.,且四棱锥,A,-,EFBC,的体积为,2.,(1),求,EF,的长;,(2),当,EF,的长度为整数时,,求,AC,与平面,ABF,所成角的正弦,值,【解】,(1),因为,EF,CB,,,C,90,,,所以,CE,EF,,,AE,EF,.,又平面,AEF,平面,EFBC,,,CE,?,平面,EFBC,.,所以,CE,平面,AEF,.,所以,CE,AE,.,又,CE,EF,E,.,CE,,,EF,?,平面,EFBC,.,所以,AE,平面,E
18、FBC,.,设,EF,x,,由于,EF,CB,,,AC,4,,,BC,2,,在图,1,中,,所以,AE,AC,EF,CB,.,即,AE,AC,EF,CB,4,x,2,2,x,.,V,A,-,EFBC,1,3,S,梯形,EFBC,AE,1,3,1,2,(,x,2)(4,2,x,),2,x,2,x,3,8,x,3,,,x,(0,,,2),由题意得,2,x,3,8,x,3,2,,即,x,3,4,x,3,0,,,即,(,x,1)(,x,2,x,3),0.,所以,x,1,或,x,1,13,2,,即,EF,1,或,EF,1,13,2,.,(2),当,EF,的长度为整数时,由,(1),知,EF,1,,建立如
19、图所示的,空间直角坐标系,,则,A,(0,,,0,,,2),,,B,(2,,,2,,,0),,,C,(0,,,2,,,0),,,F,(1,,,0,,,0),AC,(0,,,2,,,2),,,AB,(2,,,2,,,2),,,AF,(1,,,0,,,2),设平面,ABF,的法向量,n,(,x,,,y,,,z,),,,由,?,?,?,?,?,n,AB,0,,,n,AF,0,得,?,?,?,?,?,2,x,2,y,2,z,0,x,2,z,0,.,令,z,1,,则,x,2,,,y,1,,,所以,n,(2,,,1,,,1),,设,AC,与平面,ABF,所成的角为,,,则,sin,?,?,?,?,?,?,
20、?,?,|,AC,n,|,|,AC,|,|,n,|,?,?,?,?,?,?,?,?,0,2,2,(,1,)(,2,),1,2,2,6,3,3,.,所以,AC,与平面,ABF,所成角的正弦值为,3,3,.,1.,已知正方体,ABCD,-,A,1,B,1,C,1,D,1,,如图所示,,E,为上底面,A,1,C,1,的中心,,若,AE,AA,1,xAB,yAD,,,则,x,,,y,的值分别为,(,),A,x,y,1,B,x,1,,,y,1,2,C,x,y,1,2,D,x,1,2,,,y,1,解析:选,C.,由向量的三角形运算法则知,AE,AA,1,A,1,E,.,而,A,1,E,1,2,A,1,C,
21、1,,,A,1,C,1,AB,BC,,,又,AC,A,1,C,1,,,AD,BC,,所以,A,1,C,1,AB,AD,,,所以,AE,AA,1,1,2,AB,1,2,AD,,,所以,x,y,1,2,.,2.,如图,在空间直角坐标系中有直三棱,柱,ABC,-,A,1,B,1,C,1,,,CA,CC,1,2,CB,,则,直线,BC,1,与直线,AB,1,夹角的余弦值为,(,),A.,5,5,B.,5,3,C.,2,5,5,D.,3,5,解析:,选,A.,不妨设,CA,CC,1,2,CB,2,,,则,A,(2,,,0,,,0),,,B,(0,,,0,,,1),,,B,1,(0,,,2,,,1),,,
22、C,1,(0,,,2,,,0),,所以,AB,1,(,2,,,2,,,1),,,BC,1,(0,,,2,,,1),,从而,cos,AB,1,,,BC,1,AB,1,BC,1,|,AB,1,|,BC,1,|,(,2,),0,2,2,1,(,1,),9,5,5,5,,,所以直线,BC,1,与直线,AB,1,夹角的余弦值为,5,5,.,3,已知向量,e,1,,,e,2,,,e,3,是三个不共面的非零向量,且,a,2,e,1,e,2,e,3,,,b,e,1,4,e,2,2,e,3,,,c,11,e,1,5,e,2,e,3,,,若向量,a,,,b,,,c,共面,则,_,解析:因为,a,,,b,,,c,共
23、面,所以存在实数,m,,,n,,使得,c,ma,nb,,则,11,e,1,5,e,2,e,3,(2,m,n,),e,1,(,m,4,n,),e,2,(,m,2,n,),e,3,,则,?,?,?,?,?,2,m,n,11,m,4,n,5,m,2,n,,解得,?,?,?,?,?,m,7,n,3,1,.,答案:,1,4,如图,,四边形,ABCD,为正方形,,PD,平面,ABCD,,,DPC,30,,,AF,PC,于点,F,,,FE,CD,,交,PD,于点,E,.,(1),证明:,CF,平面,ADF,;,(2),求二面角,D,-,AF,-,E,的余弦值,解:,(1),证明:因为,PD,平面,ABCD,
24、,,AD,?,平面,ABCD,,,所以,PD,AD,.,又因为,CD,AD,,,PD,CD,D,,,所以,AD,平面,PCD,.,又因为,PC,?,平面,PCD,,所以,AD,PC,.,又因为,AF,PC,,,AD,AF,A,,,所以,PC,平面,ADF,,即,CF,平面,ADF,.,(2),设,AB,1.,在,Rt,PDC,中,,CD,1,,,DPC,30,,,所以,PC,2,,,PD,3,,,PCD,60,.,由,(1),知,CF,DF,,,所以,DF,CD,sin 60,3,2,,,CF,CD,cos 60,1,2,.,因为,FE,CD,,所以,DE,PD,CF,PC,1,4,,,所以,
25、DE,3,4,.,同理,EF,3,4,CD,3,4,.,如图,,以,D,为坐标原点,,分别以,DP,,,DC,,,DA,所在直线为,x,轴、,y,轴、,z,轴,建立空间直角坐标系,,则,A,(0,,,0,,,1),,,E,?,?,?,?,?,?,3,4,,,0,,,0,,,F,?,?,?,?,?,?,3,4,,,3,4,,,0,,,P,(,3,,,0,,,0),,,C,(0,,,1,,,0),AE,?,?,?,?,?,?,3,4,,,0,,,1,,,EF,?,?,?,?,?,?,0,,,3,4,,,0,.,设,m,(,x,,,y,,,z,),是平面,AEF,的法向量,则,?,?,?,?,?,m
26、,AE,,,m,EF,.,所以,?,?,?,?,?,m,AE,3,4,x,z,0,,,m,EF,3,4,y,0,,,令,x,4,,则,z,3,,,m,(4,,,0,,,3),由,(1),知平面,ADF,的一个法向量为,PC,(,3,,,1,,,0),,,设二面角,D,-,AF,-,E,的平面角为,,可知,为锐角,,故,cos,|cos,m,,,PC,|,|,m,PC,|,|,m,|,PC,|,4,3,19,2,2,57,19,.,故二面角,D,-,AF,-,E,的余弦值为,2,57,19,.,5.,如图所示,在四棱锥,P,-,ABCD,中,底面,四边形,ABCD,是菱形,,AC,BD,O,,,
27、PAC,是边长为,2,的等边三角形,,PB,PD,6,,,F,为,AP,上一点,且,AP,4,AF,.,(1),求证:,PO,底面,ABCD,;,(2),求直线,CP,与平面,BDF,所成角的大小,解:,(1),证明:因为底面,ABCD,是菱形,,AC,BD,O,,,所以,O,是,AC,,,BD,的中点,又,PA,PC,,,PB,PD,,,所以,PO,AC,,,PO,BD,.,又,AC,BD,O,,,所以,PO,底面,ABCD,.,(2),由底面,ABCD,是菱形,可得,AC,BD,,,又由,(1),,知,PO,AC,,,PO,BD,.,如图,连接,OF,,以,O,为坐标原点,以射线,OA,,
28、,OB,,,OP,分,别为,x,,,y,,,z,轴的正半轴,建立空间直角坐标系,Oxyz,.,由,PAC,是边长为,2,的等边三角形,,PB,PD,6,,,可得,OA,1,,,PO,3,,,OB,OD,3.,所以,O,(0,,,0,,,0),,,A,(1,,,0,,,0),,,C,(,1,,,0,,,0),,,B,(0,,,3,,,0),,,P,(0,,,0,,,3),,,所以,CP,(1,,,0,,,3),,,OB,(0,,,3,,,0),,,OA,(1,,,0,,,0),,,AP,(,1,,,0,,,3),由,AP,4,AF,,,可得,OF,OA,1,4,AP,?,?,?,?,?,?,3,
29、4,,,0,,,3,4,.,设平面,BDF,的法向量为,n,(,x,,,y,,,z,),,,则,?,?,?,?,?,n,OB,0,n,OF,0,,即,?,?,?,?,?,3,y,0,3,4,x,3,4,z,0,.,令,x,1,,则,z,3,,所以,n,(1,,,0,,,3),因为,cos,CP,,,n,CP,n,|,CP,|,n,|,1,1,0,3,(,3,),1,2,0,2,(,3,),2,1,2,0,2,(,3,),2,1,2,,,所以直线,CP,与平面,BDF,所成角的正弦值为,1,2,,,所以直线,CP,与平面,BDF,所成角的大小为,30,.,本部分内容讲解结束,按,ESC,键退出全屏播放,