高等代数CAIppt课件.pptx

上传人:牧羊曲112 文档编号:3836310 上传时间:2023-03-24 格式:PPTX 页数:50 大小:814.33KB
返回 下载 相关 举报
高等代数CAIppt课件.pptx_第1页
第1页 / 共50页
高等代数CAIppt课件.pptx_第2页
第2页 / 共50页
高等代数CAIppt课件.pptx_第3页
第3页 / 共50页
高等代数CAIppt课件.pptx_第4页
第4页 / 共50页
高等代数CAIppt课件.pptx_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《高等代数CAIppt课件.pptx》由会员分享,可在线阅读,更多相关《高等代数CAIppt课件.pptx(50页珍藏版)》请在三一办公上搜索。

1、高等代数CAI课件,第一章 基本概念第二章 多项式第三章 行列式第四章 线性方程组第五章 矩阵,第六章 向量空间第七章 线性变换第八章 欧氏空间第九章 二次型,广东教育学院数学系 代数与几何教研室,1,谢谢观赏,2019-7-11,何谓高等代数,大家知道,初等代数是研究数及代表数的文字的代数运算(加法、减法、乘法、除法、乘方、开方)的理论和方法,也就是研究多项式(实系数与复系数)的代数运算的理论和方法.而多项式方程及多项式方程组的解(包括解的公式和数值解)的求法及其分布的研究恰为初等代数研究的中心问题,以这个中心问题为基础发展起来的一般数域上的多项式理论与线性代数理论就是所谓的高等代数.,2,

2、谢谢观赏,2019-7-11,本课程的意义、内容及学习要求,高等代数是大学数学中的一门重要基础课程,从内容上看,它是中学代数里有关内容的继续和提高。其中许多理论对于加深中学数学教材的理解有着直接的指导意义,因此作为一个合格的中学数学教师,学好这门课程是非常必要的。此外,高等代数的思想和方法已经渗透到数学的各个领域,在数学分析、几何、计算技术等学科有广泛的应用,所以,学好这门课程也有助于学好其它数学课程,并且高代是考研的一门必考课程。,3,谢谢观赏,2019-7-11,4,谢谢观赏,2019-7-11,第一章 基本概念,第一节 集合第二节 映射第三节 数学归纳法第四节 整数的一些整除性质第五节

3、数环和数域,5,谢谢观赏,2019-7-11,第一节 集合及映射,章节名称:集合及映射教学目的与要求:了解集合的概念和表示,运算;理解并掌握映射的定义,合成,单射满射等的定义,掌握双射的等价刻画重点:证明映射是单射、满射的方法,6,谢谢观赏,2019-7-11,一、集合,把一些事物汇集到一起组成的一个整体就叫做集合;,常用大写字母A、B、C 等表示集合;,当a是集合A的元素时,就说a 属于A,记作:;,当a不是集合A的元素时,就说a不属于A,记作:,1、概念,组成集合的这些事物称为集合的元素,用小写字母a、b、c 等表示集合的元素,7,谢谢观赏,2019-7-11,关于集合没有一个严谨的数学定

4、义,只是有一个描述性的说明集合论的创始人是19世纪中期德国数学家康托尔(GCantor),他把集合描述为:所谓集合是指我们直觉中或思维中确定的,彼此有明确区别的那些事物作为一个整体来考虑的结果;集合中的那些事物就称为集合的元素即,集合中的元素具有:确定性、互异性、无序性.,Remark:,8,谢谢观赏,2019-7-11,集合的表示方法:,描述法:给出这个集合的元素所具有的特征性质.,列举法:把构成集合的全部元素一一列举出来.,例1,例3,Mx|x具有性质P,Ma1,a2,an,9,谢谢观赏,2019-7-11,2、集合间的关系,如果B中的每一个元素都是A中的元素,则称B是A的子集,记作,(读

5、作B包含于A),当且仅当,空集:不含任何元素的集合,记为,注意:,空集是任意集合的子集,如果A、B两集合含有完全相同的元素,则称 A与 B相等,记作AB.,AB当且仅当 且,10,谢谢观赏,2019-7-11,3、集合间的运算,交:;,并:,显然有,,1、证明等式:,证:显然,又,,,,从而,例题:,故等式成立,11,谢谢观赏,2019-7-11,因此无论哪一种情况,都有.,此即,,但是,12,谢谢观赏,2019-7-11,二、映射,设M、M是给定的两个非空集合,如果有 一个对,应法则,通过这个法则对于M中的每一个元素a,,都有M中一个唯一确定的元素a与它对应,则称 为,称 a为 a 在映射下

6、的象,而 a 称为a在映射下的,M到M的一个映射,记作:或,原象,记作(a)a 或,1、定义,13,谢谢观赏,2019-7-11,设映射,集合,称之为M在映射下的象,通常记作 Im,集合M 到M 自身的映射称为M 的一个变换,显然,,注,14,谢谢观赏,2019-7-11,例4判断下列M 到M 对应法则是否为映射,1)Ma,b,c、M1,2,3,4,:(a)1,(b)1,(c)2,:(a)1,(b)2,(c)3,(c)4,:(b)2,(c)4,(不是),(是),(不是),2)MZ,MZ,,:(n)|n|,:(n)|n|1,(不是),(是),15,谢谢观赏,2019-7-11,:(a)a0,,4

7、)MP,M,(P为数域),:(a)aE,(E为n级单位矩阵),5)M、M为任意两个非空集合,a0是M中的一个固定元素.,(是),(是),6)MMPx(P为数域),:(f(x)f(x),,(是),3)M,MP,(P为数域),:(A)|A|,,(是),16,谢谢观赏,2019-7-11,例5M是一个集合,定义I:,I(a)a,,即 I 把 M 上的元素映到它自身,I 是一个映射,,都是实数集R到自身的映射,即,函数可以看成是,称 I 为 M 上的恒等映射或单位映射,映射的一个特殊情形,17,谢谢观赏,2019-7-11,2、映射的乘积,即相继施行和的结果,是 M 到 M 的一个,映射,对于任意映射

8、,有,有,注:,18,谢谢观赏,2019-7-11,3、映射的性质:,设映射,(或称 为映上的);,2)若M中不同元素的象也不同,即,则称是M到M的一个单射(或称为11的);,3)若既是单射,又是满射,则称为双射,,使,则称是M到M的一个满射,(或称为 11对应),19,谢谢观赏,2019-7-11,例7判断下列映射的性质,1)Ma,b,c、M1,2,3,:(a)1,(b)1,(c)2,(既不单射,也不是满射),:(a)3,(b)2,(c)1,2)M=Z,MZ,,:(n)|n|1,(是满射,但不是单射),:(A)|A|,,(是满射,但不是单射),(双射),20,谢谢观赏,2019-7-11,:

9、(a)aE,,(是单射,但不是满射),:(a)a0,,(既不单射,也不是满射),6)MMPx,P为数域,:(f(x)f(x),,(是满射,但不是单射),7)M是一个集合,定义I:,I(a)a,,8)M=Z,M2Z,,:(n)2n,(双射),(双射),5)M、M为任意非空集合,为固定元素,21,谢谢观赏,2019-7-11,对于有限集来说,两集合之间存在11对应的充要条 件是它们所含元素的个数相同;,对于有限集A及其子集B,若BA(即B为A的真子集),则 A、B之间不可能存在11对应;但是对于无限集未必如此.,注:,如例7中的8),是11对应,但2Z是Z的真子集,22,谢谢观赏,2019-7-1

10、1,4、可逆映射,使得,则称为可逆映射,为的逆映射,,若为可逆映射,则1也为可逆映射,且(1)1,注:,的逆映射是由唯一确定的,记作1,23,谢谢观赏,2019-7-11,为可逆映射的充要条件是为11对应,即,为可逆映射,则是一个M到M的映射,且对,24,谢谢观赏,2019-7-11,即,所以为满射.,即为单射.,所以为11对应,反之,设 为可逆映射,则,25,谢谢观赏,2019-7-11,练习:,找一个R到R的11对应,则 是R到R的一个映射.,故 是11对应,26,谢谢观赏,2019-7-11,1)g 是不是R到R的双射?g 是不是 f 的逆映射?,2)g是不是可逆映射?若是的话,求其逆,

11、解:1)g是R到自身的双射,,若,则,g是单射,并且,即g是满射,又,,,g不是 f 的逆映射,事实上,,2)g是可逆映射,27,谢谢观赏,2019-7-11,1)如果 h 是单射,那么 f 也是单射;,2)如果 h 是满射,那么 g 也是满射;,3)如果 f、g 都是双射,那么 h 也是双射,并且,这与h是单射矛盾,f 是单射,证:1)若 f 不是单射,则存在,于是有,28,谢谢观赏,2019-7-11,3),因为 g 是满射,存在,使,又因为 f 是满射,存在,使,h是满射,29,谢谢观赏,2019-7-11,又因为 g 是单射,有,即,因而 h 是双射,h 是单射.,30,谢谢观赏,20

12、19-7-11,1.3 数学归纳法,内容分布1.3.1最小数原理1.3.2数学归纳法的依据教学目的掌握映射的概念,映射的合成,满射、单射、可逆映射的判断。重点、难点 映射的合成,满射、单射、可逆映射的判断。,31,谢谢观赏,2019-7-11,1.3.1 最小数原理,数学归纳法所根据的原理是正整数集的一个最基本的性质最小数原理.,1 最小数原理并不是对于任意数集都成立的,2 设c是任意一个整数,令,注意,那么经代替正整数集,最小数原理对于 仍然成立.也就是说,的任意 一个非空子集必含有一个最小数,特别,N的任意一个非空了集必含有一个最小数.,这个原理的一般形式就是数学分析中的下(上)确界原理。

13、,32,谢谢观赏,2019-7-11,1.3.2数学归纳法的依据,定理1.3.1(数学归纳法原理)设有一个与正整数n有关的命题.如果 当n=1时.命题成立;假设当n=k 时命题成立,当n=k+1 时命题也成 立;那么这个命题对于一切正整数n都成立.,33,谢谢观赏,2019-7-11,例1 证明,当 时,n 边形的内角和等于(n-2).,证 当n=3 时,命题成立.因为三角形的内角和等于=(3-2).假设时命题成立.任意一个k+1多边形,联结,那么 的内角和就等于三角形 的内角和加上k边形 的内角和.前者等于,后者由归纳法假定,等于(k-2).因此k+1多边形 的内角和等于+(k-2)=(k-

14、1)=(k+1)-2).命题得证.,34,谢谢观赏,2019-7-11,定理1.3.2(第二数学归纳法)设有一个与正整数n有关的命题.如果 当n=1时命题成立;假设命题对于一切小于k的自然数来说成立,则命题对于k也成立;那么命题对于一切自然数n来说都成立.,数学归纳法可以推广到良序集合上,即所谓超限归纳原理。,35,谢谢观赏,2019-7-11,1.4 整数的一些整除性质,一、内容分布 1.4.1 整除与带余除法 1.4.2 最大公因数 1.4.3 互素 1.4.4 素数的简单性质二、教学目的 1.理解和掌握整除及其性质。2.掌握最大公因数性质、求法。3.理解互素、素数的简单性质。三、重点、难

15、点 整除、最大公因数性质、互素有关的证明。,36,谢谢观赏,2019-7-11,1.4.1 整除与带余除法,设a,b是两个整数,如果存在一个整数d,使得b=ad,那么就说a整除b(或者说b被a整除)。用符号a|b表示a整除b。这时a叫做b 的一个因数,而b叫做a的一个倍数。如果a不整除b,那么就记作.,整除的基本性质:,37,谢谢观赏,2019-7-11,定理1.4.1(带余除法)设a,b 是整数且,那么存在一对整数q和r,使得,满足以上条件整数q和r 的唯一确定的。,38,谢谢观赏,2019-7-11,所以。这是与r是S中最小数的事实矛盾。因此.,假设还,使得,由此或者,或者。不论是哪一种情

16、形,都将导致矛盾。这样必须,从而,也就是说,39,谢谢观赏,2019-7-11,1.4.2 最大公因数,设a,b是两个整数,满足下列条件的整数 d 叫做a与b的最大公因数:,40,谢谢观赏,2019-7-11,定理1.4.2 任意 个整数 都有最大公因数。如果d是 的一个最大公因数,那么-d 也是一个最大公因数;的两个最大公因数至多只相差一个符号。,41,谢谢观赏,2019-7-11,42,谢谢观赏,2019-7-11,定理1.4.3 设d是 的一个最大公因数。那么存在整数,使得。,证 若,那么d=0,定理显然成立。设 不全为零,由定理1.4.2的证明,知,.因而存在,使得。,43,谢谢观赏,

17、2019-7-11,1.4.3 互素,设a,b是两个整数,如果(a,b)=1,那么就说a与b互素。一般地,是n个整数,如果,那么就说这n个整数 互素。,(1),证 如果 互素,那么由定理1.4.2立即得到等式(1)成立。反过来,设等式(1)成立。令。那么c能整除(1)式中的左端。所以c|1,因此c=1,即。,44,谢谢观赏,2019-7-11,1.4.4 素数的简单性质,一个正整数p1叫做一个素数,如果除1和p外,没有其它因数。,定理1.4.5 一个素数如果带队两个整数a 与b的乘积,那么它至少整除a 与b中的一个。,证 设p是一个素数,如果p|ab,但,由上面所指出的素数的性质,必定有(p,

18、a)=1。于是由定理1.4.4,存在整数s 和t 使得 sp+ta=1两边同乘以b:spb+tab=b.左边的第一项自然能被p整除;又因为p|ab,所以左边第二项也能被p整除。于是p整除左边两项的和,从而p|b.,45,谢谢观赏,2019-7-11,1.5 数环和数域,定义1 设S是复数集C的一个非空子集,如果对于S中任意两个数a,b 来说,a+b,a b,ab 都在S内,那么就称S是一个数环。,46,谢谢观赏,2019-7-11,例2令.S显然不是空集,如果,那么,定义2 设F 是一个数环,如果,F 含有一个不等于零的数;,如果,,那么就称F 是一个数域。,47,谢谢观赏,2019-7-11,48,谢谢观赏,2019-7-11,定理1.5.1 任何数域都包含有理数域Q。,证 设F 是一个数域。那么由条件,F 含有一逐步形成不等于0的数a,再由条件,。用1 和它自己重复相加,可得全体正整数,因而全体正整数都属于F。另一方面,所以F也含有0与任一正整数的差,亦即全体负整数。因为F含有全体整数。这样,F 也含有用意两个整数的商(分母不为0),因而,F 含有一切有理数。,49,谢谢观赏,2019-7-11,50,谢谢观赏,2019-7-11,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号