《锌电解槽计算.doc》由会员分享,可在线阅读,更多相关《锌电解槽计算.doc(10页珍藏版)》请在三一办公上搜索。
1、3.1概述 工业上从硫酸锌水溶液中电解沉积锌有三种工艺:即低酸低电流密度法(标准法);中酸中电流密度法(中间法)和高酸高电流密度法。目前我国多采用中酸中电流密度法的下限,低酸低电流密度法上限的电解法。表3-1为三种方法的比较。表3-1 锌电积三种工艺的比较 工艺方法 电解液含 H2SO4(克/升)电流密度(安/米2) 优缺点酸低电流密度法(标准法)110-130300-500耗电少,生产能力小,基建投资大中酸中电流密度法(中间法) 130-160 500-300生产操作比前者简单,生产能力比前者大但比后者小基建投资小高酸高电流密度法220-3008001000 甚至大于1000生产能力大;耗电
2、多;电解槽结构复杂。3.2 设计任务 设计生产能力为7万吨锌锭的电解设备3.3 原始资料3.3.1 设进入电解槽的电解液成份如表3-2所示:表3-2 进入电解槽的电解液成份(克/升) 组 成 Zn Fe Cd Cu COMn(克/升) 120 0.045 0.005 0.0004 0.005 4.7203.3.2 电解后电解废液成份如表3-3所示表3-3 电 解 废 液 成 份 (克/升)组 成 Zn Fe Cd Cu COMn(克/升) 46 0.028 0.003 0.0002 0.005 3.217 3.3.3 一些技术条件及技术经济指标 用于制造锌粉之锌锭占年产锌锭量的百分比,=0.0
3、28;年工作日为330日。 阴极锌熔铸直收率 1 = 97% 阴极电流密度 D阴 = 520安培 槽电压 V槽 = 3.20伏 电流效率 i = 98% 阴极规格 长宽厚= 10006664(毫米)3.4 工艺过程及设备计算3.4.1物料平衡及电解槽计算 阴极锌成份的计算在电积过程中,一部分铜、铁、镉与锌一齐在阴极上沉积,一升电解液得到的阴极锌含金属量如表3-4所示。表3-4 一升电解液沉积的金属量(克)组 成 Zn Fe Cd Cu共计(克) 64.00 0.005 0.002 0.0002 64.0072 铅-银阳极在电解过程中被腐蚀,使一部分铅进入到阴极锌中。设阴极锌含铅0.006%则进
4、入到阴极锌中铅的量为: 克那么阴极锌的成份如表3-5所示。表3-5 阴 极 锌 成 份 组成 Zn Pb Fe Cd Cu 共计重量(克) 64.000.0038 0.0050 0.0020 0.0002064.0110 % 99.983 0.006 0.0078 0.003 0.0003 1003.4.2 所需电解槽数量的计算 (1)每日应产出的阴极锌量的计算。 Q1=吨式中: Q1-每日应产出阴极锌的数量,吨; Q -设计生产能力,吨锌锭/年; -用于制造锌粉之锌锭占年产锌锭量的百分比,%; m -年工作日,日; -阴极锌熔铸直收率,%。 Q1=吨/日 (2)阴极有效总面积及片数的计算 阴
5、极有效总面积的计算。 106 米2 式中: F-阴极有效总面积,米2 Q-每日产出的阴极锌量,吨; D-阴极电流密度,安培/米2; -电流效率,%; 1.2195-锌的电化当量,克/安培; 24-电解析出时间,小时。 F=106=15086米2 阴极边上装有塑料绝缘条,没边各占区阴极板宽7毫米,阴极浸没于电解液的深度为0.87米,则每片阴极的有效面积(按两面计)为: f阴 =0.87(0.666-0.0072)2=1.13米2故共需阴极片数n=片设一个电解槽装阴极片32块,则共需电解槽数为:个每个电解槽的阴极总面积为: 1.1332=36.16米2 取备用电解槽24个,则一共有电解槽560个。
6、这就可把电解槽分为两个系列。每个系列有280个电解槽,在每个系列中可按35个电解槽组成一组,共八组为一系列。3.4.3 电解槽内部尺寸大小的计算 电解槽内部宽度的计算。 设阴极边缘到槽壁距离为95毫米,则电解槽内宽为: B=666+295=856860毫米 电解槽内部长度计算。 设每片阴极厚度为5毫米,每片阳极厚度为10毫米,阴阳极间距离为34毫米,电极到两端壁距离为125毫米,每个电解槽有阴极片32片,阳极片33片。则电解槽内部长度为: L=325+3310+32234+1252=2916毫米 电解槽内部高度的计算。设槽内液面至槽面的距离为100毫米;槽内阴极浸入电解液的深度为880毫米;阴
7、极下部端缘距槽低500毫米。则电解槽的内高位: H=100+880+500=1480毫米故电解槽的内部尺寸为: 长宽高 = 29168601480 (毫米)电解槽容积(不设槽内冷却器)为: V槽 = LBH = 2.9160.861.48 = 3.711米2 电解槽体的材料有木质及钢筋混凝土两种。目前多采用钢筋混凝土电解槽。电解槽内衬耐腐蚀的材料有:铅皮、聚氯乙烯、环氧玻璃钢、辉绿岩等。3.4.4 通过电解槽电流强度的计算一个电解槽的阴极总面积为36.16米2 故 电流强度 I=36.16520 = 18803安培 设富余5.4% 则 I=188081.054 = 19818.362安培3.4
8、.5 整流设备选择整流设备总功率按下式计算。 式中: W-整流设备总功率,千瓦; Q-每天应产出的阴极锌总量,吨; E-槽电压,伏,取E=3.25伏 则 千瓦系列中的电压降为总电压降的1-2.5%,取1.5%,则总电压降为: 2803.20(1+0.015)=909.44伏选用GHS-10000/0-800硅整流器。单台功率8000千瓦。故需整流器台数为: 台 取4台每系列由2台硅整流器供电,总电流为:100002 = 20000安培。整流器设备功率与电解槽数量要求相适应。3.4.6 进入电解槽电解液数量的计算供给一个电解槽的电解液数量可按如下计算。 式中: Q-进入一个电解槽的中性电解液数量
9、,升/小时; I-通过电解槽的电流强度,克/安培; q-锌的电化当量,1.2195,克/安培 -电流效率,% N-电解槽数目,个 P-中性电解液含锌量,克/升; p-废电解液含锌量,克/升。故 升/小时一个电解槽每天需中性电解液数量为: 303.724=7289升/天全部电解槽每天共需中性电解液数量为: 7289417=3040米33.4.7 废电解液数量的计算 一小时供中性电解液303.7 升,含锌120克/升,此时电解液比重为1.258。因此中性电解液重量为: 公斤 在阳极上析出氧量为: 公斤 电极反应为: ZnSO4 + H2O Zn + H2SO4 + 1/2O2 (直流电) 析出的锰
10、的量为: 公斤 故共析出: 19.437+4.804+0.456=24.697 公斤 剩余: 382.05 - 24.697 = 357.35 公斤。 电解时有一部分电解液被蒸发而损失。设每平方米电解液表面每小时蒸发损失一公斤电解液。电解液表面积为: S槽 S极 =2.5080.328 =2.18米2 则蒸发损失为: 2.181=2.18 公斤。 由于电解液飞溅液要损失一部分电解液,设为0.3% ,则飞溅损失为: 303.70.003=0.911 公斤 损失电解液量一共为: 2.18 + 0.911 = 3.09 公斤故 从一个电解槽每小时流出的废电解液量为: 357.353.07 = 354
11、.28 公斤/小时 设此时电解液的比重为1.18,则废电解液的体积为: 升/小时3.4.8 进入阳极泥中各成分的计算 设阳极消耗的铅量诶: 每吨阴极锌为1.5 公斤。 则析出20.173 公斤锌,消耗铅量为: 公斤进入阴极锌中的铅量为: 公斤进入阳极泥中的铅量为: 0.03030.00012 = 0.03018公斤换算成 PbO2 = 公斤 (其中 Pb = 0.03018公斤, O2= 0.0462公斤)一个电解槽沉淀的锰量为0.456公斤 换算成 MnO2 = 公斤 (其中 Mn = 0.456公斤,O2=0.265公斤 )故进入阳极泥的总量为: 0.03487 + 0.721 = 0.7
12、558 公斤 (其中 O2 = 0.2998公斤)3.4.9 进入大气中的氧量 4.804 0.004650.265 = 4.5344 公斤3.4.10 编制一个电解槽的物料平衡 根据以上计算结果,编制一个电解槽的物料平衡,如表3-6所示。 表 3-6 一个电解槽的物料平衡 加 入 产 出 序 号 项 目 公 斤 % 序 号 项 目 公 斤 % 1中性液 382.0599.99 1阴极锌19.437 5.09 2从阳极进入的铅0.030180.01 2阳极泥0.75580.198 3废电解液354.2892.72 4进入大气中的氧4.53441.19 5损失3.070.8 6误差-0.0029
13、2 共 计382.08018 共 计382.08012100 3.5 电解槽热平衡计算通常以单个电解槽为基础进行计算,然后计算出全车间或一个系列电解槽在电解过程中总的剩余热量。电解槽热平衡按下面式子计算。 Q电流 + Q新 = Q废 Q蒸 Q 溅辐传余式中:Q电流- 电流通过产生的热量,千卡/小时;Q新 - 新液带入热量,千卡/小时;Q废 - 电解废液带走的热量,千卡/小时;Q蒸 - 电解液表面蒸发损失的热量,千卡/小时;Q 溅 - 电解液喷溅损失的热量,千卡/小时;辐传- 辐射、对流和传导损失的热量,千卡/小时;余 -剩余的热量,千卡/小时。 3.5.1 热收入 (1)电流通过电解液产生的热
14、量 Q电流 =0.239IEt10-3 千卡/时式中: I - 通过电解槽的电流,18803安培; E - 为电解液、极板、阳极泥及浓差极化的电压降。在一般情况下,占槽电压的20%。即E=3.200.2 =0.64伏 t - 通电时间,秒,3600秒;故 Q电流 =0.239188030.64360010-3 =10354 千卡/时。(2)新液带入热量 Q新 = m1 c1 t1 千卡/时式中: m1 -单位时间进入电解槽的新液重量,公斤/小时 c1 -新液比热,千卡/公斤; t1 -加入新液的温度, 。从冶金计算得知,进入电解槽的新液量为:382.05公斤/时。电解液配液采用大循环方式进行,
15、新液:废液=1:5 ,要求混合后进入电解槽新液温度为35,此时电解液的比热为:0.78千卡/公斤。 Q新=382.050.7835=10430千卡/时 Q收= 10430+10354=20784千卡/时。3.5.2 热支出(1) 废电解液带走的热 废电解液为354.28公斤/小时,设废电解液温度为40,此时电解液的比热为0.8千卡/公斤,则 Q废=354.28400.8=11337千卡/时(2)电解液表面蒸发损失的热 Q蒸= S液表面Wq汽式中: S液表面 -电解槽中电解液有效表面积,米2;已求出S液表面=2.18米2; W-电解液表面蒸发损失的水量,公斤/米2时。根据铜电解液中水的蒸发量与温
16、度的关系可确定40时电解液单位表面蒸发的水量W= 1.公斤/米2时; q汽 - 40时水的汽化潜热为578千卡/公斤。故 Q蒸 = 2.181.0578 = 1260.04 千卡/时。 (3)电解液飞溅损失的热量为:0.911公斤故 Q溅 0.911400.8 =29.2千卡/小时。(4) 辐射、对流和传导损失的热 Q辐+传 = (Q蒸 + Q溅 )=(1260.04+29.2)=143.2千卡/时 Q支 =11336+1260.04+29.152+143.2=12768.43.5.3 剩余热 Q剩 =21108-12768.4=8339.6千卡/时根基计算结果,编制热平衡表如表3-7所示。表
17、 37 锌 电 解 槽 热 平 衡 热 收 入 热 支 出 序 号 名 称 千 卡 % 序 号 名 称 千 卡 % 1电流产生热 10515.850.34 1废液带走热11336 54.74 2新液带入热 1043049.66 2电解液蒸发损失热1260.04 5.8 3电解液飞溅损失热29.1520.14 4辐射、对流、传导损失热143.20.66 5剩余热8339.638.65 共 计20945.8100 共 计20945.8100 计算可知:锌电解槽中热量大大过剩。因此电解液必须冷却。锌电解液冷却方法有以下几种:(1) 槽内冷却; (2)真空蒸发冷却; (3)冷却塔冷却。 表3-8为各种
18、冷却方法的适用条件及优缺点。 冷却方式的的选择,需根据工厂的生产规模、电流强度、循环方式、温度要求、气候条件和供水条件等因素,经多方案比较确定,可选择其中的一种或两种方式相结合的方案。我国株洲冶炼厂原来才用真空蒸发冷冻机冷却电解液,实践表明,每年耗费蒸汽13万吨,电力320万度和循环冷却水2584万立方米。据报道,该厂1980年起试建一台50平方米空气冷却塔,取得了满意的经济效益。现在已改用空气冷却塔来冷却电解液,改造后,每年节约标准煤18000吨,节约经营管理费220万元。经济效益显著。可见,方案的选择是至关重要的。表3-8 锌电解液各种冷却方式比较冷却方式 槽 内 冷 却 真空蒸发冷却冷却
19、塔冷却适用条件生产规模小,电流强度小,一般为小循环,供水充足,水温低(一般为地下水)。生产规模大,电流强度大,大循环,建厂地区气温高,湿度大。生产规模大,电流强度大,大循环,建厂地区气温低,湿度小,供水困难,水价高。优点设备制造简单,容易上马;不需单独管理;无动力消耗。不受地区气候条件限制,能保证电解液达到较低温度;电解槽利用系数大;由于蒸发时带走水份,克增加洗渣水量,降低渣中水溶锌;提高锌直收率,降低酸耗。便于自动控制。设备制造比较简单;投资少;不消耗水和蒸汽;经营费低;可蒸发部分水份。缺点间接热交换,水消耗量大;受地区气象条件限制;电解槽利用系数小;消耗有色金属。设备制造复杂;蒸汽和水消耗量大;投资大能耗高;经营费用高;需经常清理结垢物。受地区气温和湿度限制较严重,当电解液温度接近或超过空气湿球温度,不能采用。