《最新小升初数学衔接班教材.doc》由会员分享,可在线阅读,更多相关《最新小升初数学衔接班教材.doc(45页珍藏版)》请在三一办公上搜索。
1、目 录第一讲 计算中的技巧1第二讲 行程问题5第三讲 工程问题8第四讲 图形的面积17第五讲 有理数21第六讲 有理数的加减法24第七讲 有理数的乘除法28第八讲 有理数的乘方 科学计数法30第九讲 整式33第十讲 一元一次方程35第十一讲 实际问题与一元一次方程39第十二讲 图形的初步认识43第十三讲 角45第十四讲 相交线 平行线51第十五讲 平行线的性质 命题 定理54 第一讲 计算的技巧知识导航 我们在进行运算时,除了熟练掌握好运算法则外,还要通过观察和分析,找出题目中数的特点,合理、有效地进行计算。整数、小数与分数四则混合运算常用的方法、技巧如下:1、 运算法则:先乘除后加减;先算小
2、括号,再算中括号;同级运算从左到右依次计算。2、 运算定律与性质: 加法交换律:; 加法结合律:; 乘法交换律: 乘法结合律: 乘法分配律: 减法的性质: 除法的性质: 3、灵活运用通分和约分 4、分数、小数化成统一的形式再计算,一般是分数化成小数。5、凑整法:运用运算定律,使式子中一些数凑成整十、整百或整千的数再计算。我们通常是利用运算律将一些数凑成整一、整十或整百再计算。6、分组分解法:利用交换律和结合律对式子进行分组求解,最后再综合求解。 7、综合方法:计算比较复杂的式子时要多种方法一起用。重难点运算法则和运算定律与性质的掌握和应用。易错点去括号是的变号法则,尤其是括号前是减号。精典例题
3、 例1: 思路点拨 以上的每个分数的分母正好是相邻两个自然数的积,而且分子正好是分母两个因数的差(1),我们可以直接利用裂项公式进行裂项产生加减抵消后化繁为简。模仿练习 例2:计算:9750.25+9.75 模仿练习 例3:+ (2010年成都育才网络班招生数学试题) 模仿练习计算:(2013年成都外国语学校本地生招生考试题)例4:计算:模仿练习 我学到了什么:第二讲 行程问题知识导航我们知道:距离=速度时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如:总量=每个人的数量人数. 工作量=工作效率
4、时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米重难点各种数量关系在实际习题中的掌握和应用。易错点抓不住题目中的关键字、词、句,读不懂题目。精典例题例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面
5、包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 思路点拨解:先计算,从学校开出,到面包车到达城门用了多少时间.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 思路点拨:可以作为“追及问题”处理.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 思路点拨拓展练习1、 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了
6、他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?2、小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?3、 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离?4、 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地
7、同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.我学到了什么:第三讲 工程问题知识导航 在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作量=工作效率时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到所需时间=工作量工作
8、效率=6(天)两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.重难点各种数量关系在实际习题中的掌握和应用。易错点抓不住题目中的关键字、词、句,读不懂题目。精典例题例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单
9、独完成,那么乙还需要做多少天?甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天). 答:乙还需要做 56天.例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?例7 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做
10、了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?拓展练习1、 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定时间的,再把打开的水管增加1倍,就能按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?2、蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有池水,如果按甲、乙、丙、丁、甲、乙的顺序轮流打开1小时,问多少时间
11、后水开始溢出水池?3、 一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?4、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?5、一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?6、 有三片牧场,场上草长得一样密,而且长得一样快,它们的面积分别是3亩、
12、10亩、24亩,12头牛吃完第一片牧场的草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?我学到了什么:第四讲图形面积知识导航用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底高2.一个等腰直角三角形,当知道它的直角边长,它的面积是: 直角边长的平方2.当知道它的斜边长,它的面积是: 斜边的平方4精典例题例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢?例2 右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.(阴影部分)的面
13、积是多少?例3 在边长为6的正方形内有一个三角形BEF,线段AE3,DF2,求三角形BEF的面积. 4、右图由六个等腰直角三角形组成.第一个三角形两条直角边长是8.后一个三角形的直角边长,恰好是前一个斜边长的一半,求这个图形的面积.解:从前面的图形上可以知道,前一个等腰直角三角形的两个拼成的正方形,等于后一个等腰直拓展练习1、如下图,两个长方形叠放在一起,小长形的宽是2,A点是大长方形一边的中点,并且三角形ABC是等腰直角三角形,那么图中阴影部分的总面积是多少?2、 如右图,已知一个四边形ABCD的两条边的长度AD7,BC3,三个角的度数:角 B和D是直角,角A是45.求这个四边形的面积.3、
14、在右图 1115的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)面积是多少?4、从一块正方形土地中,划出一块宽为1米的长方形土地(见图),剩下的长方形土地面积是15.75平方米.求划出的长方形土地的面积.5、 如右图.正方形ABCD与正方形EFGC并放在一起.已知小正方形EFGC的边长是6,求三角形AEG(阴影部分)的面积.6、下图中每个小正方形的边长为1厘米,求阴影部分的面积。我学到了什么:第五讲 有理数正数和负数【知识导航】1、像3、2、0.8这样大于0的数叫做正数。(根据需要,有时也在正数前面加正号“+”。)2、像-1、-4、
15、-0.6这样在正数前面加负号“-”的数叫做负数。3、0既不是正数也不是负数。4、带有正号的数不一定是正数,同样带有负号的数不一定是负数。5、有理数的定义:整数和分数统称为有理数(有限小数和无限循环小数都是有 理数,而无限不循环小数却不是有理数)6、有理数的分类:(1)按整数分数分类 (2)按数的正负性分类 【数轴】知识导航1.数轴 数轴具有 、 、 三个要素。2.数轴上表示a的点与原点的距离叫做 a的绝对值,如= 、= 3.一般的,设a是正数,则数轴上表示a的点在原点的_边,与原点的距离是_个单位长度;表示-a的点在原点的_边,于原点的距离是_个单位长度。【相反数】知识导航1.像2和-2、-5
16、和5、2.5和-2.5这样,只有_不同的两个数叫做互为相反数2.0的相反数是 。一般地:若a为任一有理数,则a的相反数为-a3.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。4.互为相反数的两个数,和为0。【绝对值】一、基础知识【任一个有理数a的绝值】用式子表示就是:(1)当a是正数(即a0)时,a= ;(2)当a是负数(即a0)时,a= ;(3)当a=0时,a= .1.一般地,数轴上表示数a的点与原点的 _叫做数a的绝对值,记作a。2.一个正数的绝对值是 ;一个负 数的绝对值是它的的 3.正数大于0,0大于负数,正数大于负数。4.两个负数,绝对值
17、大的反而小。(一)正数和负数、数轴、相反数、绝对值专项练习题一、 精心选一选,慧眼识金!1. 的相反数是( )2.下列说法正确的是( )A、正数、负数统称为有理数 B、分数、整数统称为有理数C、正有理数、负有理数统称为有理数 D、以上都不对3下列都是无理数的是 ( )A.0.07, B., C., D.3.14,4、任何一个有理数的平方( )A一定是正数 B一定不是负数 C一定大于它本身 D一定不大于它的绝对值5. 有理数22,(2)2,|23|,按从小到大的顺序排列是( )A|23|22(2)2B22(2)2|23|C22(2)2|23|D22|23|(2)26.有理数a、b在数轴上的对应的
18、位置如图所示,则( ) Aa + b0 Ba + b0 Cab = 0 Dab07下列说法正确的是( )A、一个数的绝对值等于它本身,则这个数是正数B、一个数的绝对值等于它的相反数,则这个数是负数C、一个数的绝对值不可能等于零D、一个数的绝对值不可能是负数8.的所有可能的值有( ) A.1个B.2个C.3个D.4个二、耐心填一填,一锤定音!9.把下列各数填在相应的横线里:1,-4/5,8.9,-7,5/6,-3.2,+1008,-0.05,28,-9正整数: 负整数: 正分数: 负分数: 10.有理数中,最小的正整数是 ,最大的负整数是 11.有理数中,是整数而不是正数的数是 ,是负数而不是分
19、数的数是 ,12.(-2)的相反数是 .13.某天上午的温度是5,中午又上升了3,下午由于冷空气南下,到夜间又下降了9,则这天夜间的温度是 我学到了什么:第六讲 有理数的加减法知识导航有理数的加法法则:有理数加减法法则口诀记法先定符号,再计算,同号相加不变号;异号相加“大”减“小”,符号跟着“大数”跑;减负加正不混淆。1. 同号两数相加,取相同的符号,并把绝对值相加。2. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3. 互为相反数的两个数相加得0.4. 一个数同0相加,仍得这个数。5. 加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b
20、+c)有理数的减法法则:减去一个数,等于加上这个数的相反数。有理数的加减法练习题1.(1)15(22) (2)(13)(8) (3)(0.9)1.51 (4)2.计算:(1) (2) (3) (4)3.计算:(1) (2)4.下列运算中正确的是( )A、 B、C、 D、5.(1)绝对值小于4的所有整数的和是_;(2)绝对值大于2且小于5的所有负整数的和是_。6.下列各式可以写成abc的是( )A、a-(b)-(c) B、a(b)(c) C、a(b)(c) D、a(b)(c)7.若,则_。8.若则_9.10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:0
21、.5,0.3,0,0.2,0.3,1.1,0.7,0.2,0.6,0.7.10袋大米共超重或不足多少千克?总重量是多少千克?10.一个病人每天下午需要测量一次血压,下表是该病人周一至周五高压变化情况,该病人上个周日的高压为160单位。星期一二三四五高压的变化(与前一天比较)升25单位降15单位升13单位升15单位降20单位(1)该病人哪一天的血压最高?哪一天血压最低?(2)与上周比,本周五的血压是升了还是降了我学到了什么:第七讲 有理数的乘除法知识导航有理数的乘法法则:1. 两数相乘,同号得正,异号得负。2. 任何数同0相乘,都得0.3. 乘积是1的两个数互为倒数。4乘法交换律:ab=ba 乘
22、法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac有理数的除法法则:1. 除以一个不为0的数,等于乘以这个数的倒数。2. 两数相除,同号得正,异号得负,并把绝对值相除。3. 0除以任何一个不为0的数,都得0.有理数的运算顺序,先算乘除,后算加减。二、知识题库1.填空:(1)5(4)= ; (2)(-6)4= ;(3)(-7)(-1)= ; (4)(-5)0 =; (5); (6) ;(7)(-3)2.填空:(1) ;(2)= ;(3) ;(4) ;(5) ;(6) 3.一个有理数与其相反数的积( )A、符号必定为正 B、符号必定为负 C、一定不大于零 D、一定不小于零4.化
23、简下列分数:(1); (2); (3); (4).5.下列说法错误的是( )A、任何有理数都有倒数 B、互为倒数的两个数的积为1 C、互为倒数的两个数同号 D、1和-1互为负倒数6.如果(的商是负数,那么( )A、异号 B、同为正数 C、同为负数 D、同号7.已知两个有理数a,b,如果ab0,且a+b0,那么( )A、a0,b0 B、a0,b0 C、a,b异号 D、a,b异号,且负数的绝对值较大8.若,求的值9.若a,b互为相反数,c,d互为倒数,m的绝对值是1,求的值我学到了什么:“奇负偶正”的应用1、如下符号的化简(指负号的个数与结果符号的关系),如:-+-(-2)= -22、连乘式的积(
24、指负因数的个数与结果符号的关系),如:(-1)(-2)(-3)(+4)=-24(-1)(-2)(-3)(-4)=243、负数的乘方(指乘方的指数与结果符号的关系),如:(-2)3=-8, (-3)2=94、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变时,分数的值就变相反了),如:;第八讲 有理数的乘方 科学计数法【有理数的乘除法】知识导航1.求几个相同因数的积的运算,叫做有理数的乘方。即:an=aaa(有n个a) 2.从运算上看式子a,可以读作;从结果上看式子a可以读作.【科学计数法】【近似数及有效数字】知识导航1.把一个大于10的数记成a
25、 10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.2.对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。二、【有理数的乘除法】“奇负偶正”的应用1、如下符号的化简(指负号的个数与结果符号的关系),如:-+-(-2)= -22、连乘式的积(指负因数的个数与结果符号的关系),如:(-1)(-2)(-3)(+4)=-24(-1)(-2)(-3)(-4)=243、负数的乘方(指乘方的指数与结果符号的关系),如:(-2)3=-8, (-3)2=94、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变
26、时,分数的值就变相反了),如:;知识题库1. 33= ;()2= ;-52= ;22的平方是 ;2.下列各式正确的是( ) A. B. C. D. 3.下列说法正确的是( )A.如果,那么 B.如果,那么 C.如果,那么 D.如果,那么4.在2+32(6)这个算式中,存在着 种运算.请你们讨论、交流,上面这个式子应该先算 、再算 、最后算 . 5.有理数的运算 (-1)102+(-2)34 (-5)33 6. 已知=3,=4,且,求的值。7. (能力提升)某大楼地上共有12层,地下共有4层,每层高2.8米,请用正负数表示这栋楼每层的楼层号,某人乘电梯从地下3层升至地上7层,电梯一共上了多少米?
27、8、下列运算正确的是( )A、a3a3=2a3 B、a3 +a3=2a6 C、(-2x)3=-6x3 D、a6a2=a4二、【科学计数法】【近似数及有效数字】知识题库1. 水星和太阳的平均距离约为57900000 km用科学记数法表示为 .2.(1)有 个有效数字,它们分别是 ; (2)有 个有效数字,它们分别是 ;中.考.资.源.网(3)有 个有效数字,它们分别是 .3.120万用科学记数法应写成 ;2.4万的原数是 .4.我国的国土面积为平方千米,按四舍五入保留三个有效数字,则我国的国土面积可表示为 .5.改革开放30年以来,成都的城市化推进一直保持快速、稳定的发展态势.据统计,到2008
28、年底,成都市中心五城区(不含高新区)常住人口已经达到4410000人,这这个常住人口数有如下几种表示方法:人;人;人。其中用科学记数法表示正确的序号为 .6.下列说法正确的是( )A、近似数32与32.0的精确度相同 B、近似数32与32.0的有效数字相同C、近似数5万与近似数5000的精确度相同 D、近似数有3个有效数字7.广东省2009年重点建设项目计划(草案)显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A、元 B、元 C、元 D、元8.已知亿是由四舍五入取得的近似数,它精确到( )A、十分位 B、千万位 C、亿位 D、十亿位9.地球绕太阳转动每小时经过的路程约
29、为1.1105km,声音在空气中每小时传播1.2103km,地球绕太阳转动的速度与声音传播的速度哪个快?10.把47155精确到百位可表示为 .三、1.据宁波市休闲旅游基地和商务会议基地建设五年行动计划预计到2012年,宁波市接待游客容量将达到4640万人次。其中4640万用科学记数法可表示为( )A、 B、 C、 D、2. “”汶川大地震后,世界各国人民为抗震救灾,积极捐款捐物,截止2008年5月27日12时,共捐款人民币327.22亿元,用科学记数法(保留两位有效数字)表示为( )A、 B、 C、 D、我学到了什么:第九讲 整式知识导航1.单项式:像100t,6a2,6a3这样都是数字和字
30、母的积的式子叫做单项式。2.单独的一个字母或者一个数字也叫单项式。3.单项式中数字因式叫做单项式的系数,单项式中所有字母指数的和叫做单项式的次数。4多项式:几个单项式的和叫做多项式。5.每个单项式叫做多项式的项。不含字母的项叫做常数项。6.多项式里次数最高项的次数叫做多项式的次数。7单项式和多项式统称整式。8.同类项:在多项式中, 所含字母 相同,并且相同字母的 指数 也分别相同的项叫做同类项。(同类项必需满足两个条件,缺一不可)9.合并同类项法则:对应项的系数相加减,其余不变。(合并同类项的关键之处在于正确找到同类项)10.取括号法则:如果括号外的因数是正数,取括号后原括号内各项的符号与原符
31、号相同。如果括号外的因数是负数,取括号后原括号内各项的符号与原符号相反。二、知识题库1.请写出下列单项式的系数和次数2a 7abc -23b4 -ab2系数_次数_ 系数_次数_ 系数_次数_ 系数_次数_2.请写出下列多项式的项和次数X2+x+8 2a-3 -b3-2a2 7a+8b+9c项_ 项_ 项_ 项_次数_ 次数_ 次数_ 次数_3.把下列各式填在相应的大括号内:-x,,a2-,-7,9.单项式: ,多项式: ,整式: .4. 下列各式中,与x2y是同类项的是()A.xy2B.2xyC.-x2yD.3x2y25.计算:(1) 2(x1)-x (2)-5(x2-3)-2(3x25)6
32、.已知Ax3-2x2x-7,B6x2-8x4,Cx3-2x2-9,求:(1)A-2BC; (2)4A-2B3C.我学到了什么:第十讲 一元一次方程知识导航1.含有未知数的等式叫方程2. 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程3.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个代数式,所得结果仍是等式。(2)等式两边都乘以(或除以)同一个数(除数不为0),所得结果仍是等式。4、把等式一边的某项变号后移向等式的另一边,叫做移向。(移向要变号)知识题库1.判断下列各式哪些是一元一次方程:(1)x=;(2)3x2;(3)y=1;(4)5x23x+1; (5)3x+y=12
33、y; (6)17y2=2y.2.若关于x的方程3x3a+15=0是一元一次方程,则a=.3.写出一个解是2的一元一次方程为 .4.若2xa=3,则2x=3+,这是根据等式的性质1,在等式两边同时.若6a=4.5,则=1.5,这是根据等式的性质2,在等式两边同时. 5.下列方程中以x=为解的是()A.2x=4 B.2x1=3 C.x1= D.x+1=6.已知5a3b1=5b3a,利用等式的性质比较a、b的大小.7.某钢铁厂今年5月份的某种钢产量是50吨,预计6月份产量是a吨,比5月份增长x%,那么a是() A.50(1+x%) B.50x% C.50+x% D.50(1+x)%8.已知关于x的方
34、程5x+3k=24的解为3,求k21+k的值9.在1,2, 这三个数中,是方程7x+1=102x的解的是.10.当k=时,方程5xk=3x+8的解是2.11.若代数式+与+1的值相等,则x=.12.如果2x5a43=0是关于x的一元一次方程,那么a=,此时方程的解是.12、已知关于x的方程ax22(ax),它的解满足|x|0,则a。13当x= 时,代数式与代数式的值相等14.若与有相同的解,那么_ _ _15代数式与互为相反数,则16小李在解方程(x为未知数)时,误将看作,解得方程的解,则原方程的解为_17解下列方程(1) (2)18已知等式是关于的一元一次方程(即未知),求这个方程的解.19某人共收集邮票若干张,其中是2000年以前的国内外发行的邮票,是2001年国内发行的,是2002年国内发行的,此外尚有不足100张的国外邮票求该人共有多少张邮票?20.初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,_?请你将这道作业题补充完整并列出方程解答21.如果方程的解是,求的值22公园门票价格规定如下表:购票张数150张51100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人经估算,如果