《机械振动及机械波知识点(全).doc》由会员分享,可在线阅读,更多相关《机械振动及机械波知识点(全).doc(16页珍藏版)》请在三一办公上搜索。
1、简谐运动及其图象知识点一:弹簧振子(一)弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。注意:(1)小球原来 的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。(2)小球的运动是平动,可以看作质点。(3)弹簧振子是一个不考虑 阻力,不考虑弹簧的,不考虑振子(金属小球)的 的 化的物理模型。(二)弹簧振子的位移时间图象(1)振动物体的位移是指由 位置指向 _的有向线段,可以说某时刻的位移。说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是
2、相对于 位置而言的,即初位置是 位置,末位置是振子所在的位置。(2)振子位移的变化规律振子的运动AOOBBOOA对O点位移的方向 向左 向右大小变化 减小 (4)弹簧振子的位移时间图象是一条 曲线。知识点二:简谐运动(一)简谐运动如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。(二)描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开 位置的 距离,是表征振动强弱的物理量。一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。(2
3、)周期(T)和频率(f)振动物体完成一次 所需的时间称为周期,单位是秒(s);单位时间内完成 的次数称为频率,单位是赫兹(HZ)。周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。周期和频率的关系是: (3)相位()相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。(三)固有周期、固有频率任何简谐运动都有共同的周期公式:,其中m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由 本身的特性决定,与振幅 关,只由振子质量和回复力系数决定。T叫系统
4、的周期,f叫频率。可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。(四)简谐运动的表达式y=Asin(t+),其中A是,是t=0时的相位,即初相位或初相。知识点三:简谐运动的回复力和能量(一)回复力:使振动物体回到平衡位置的力。(1)回复力是以 命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。(2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“ 平衡位置”。(3
5、)回复力是是振动物体在 方向上的合外力,但不一定是物体受到的合外力。(二)对平衡位置的理解(1)平衡位置是振动物体最终 振动后振子所在的位置。(2)平衡位置是回复力为 的位置,但平衡位置 是合力为零的位置。(3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力 于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。(三)简谐运动的动力学特征F回 ,a回kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。弹簧振子在平衡
6、位置时F回=。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹性限度),考虑到回复力的方向跟位移的方向相反,有F回= ,k为弹簧的劲度系数,所以弹簧振子做简谐运动。(四)简谐运动的能量特征振动过程是一个动能和势能不断转化的过程,总的机械能。振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越 。知识点四:简谐运动过程中各物理量大小、方向变化情况(一)全振动振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。(二)弹簧振子振动过程中各物理量大小、方向变化情况过程:物体从A由静止释放,从AOBO ,经历一次全振动,图中O为平衡位置,A、B为最大位
7、移处:取OB方向为正: 物理量过程位移s 速度v 加速度a 回复力F 动能Ek 势能EP 运动性质 A 最大(-) 最大 最大kA 0最大 AO (-) 增大 减小 (+) 增大 减小 a的变加速运动O 0最大 0 0势能全部转化为动能 OB (+) 减小(+) 增大 增大(-) 减小 a的变减速运动B 0 最大 0最大动能全部转化为势能 BO 减小(+) 增大 减小(-) (-) 增大 a的变加速运动O 0 0 0势能全部转化为动能 OA (-) 减小 增大 (+) 减小 增大 a的变减速运动小结:弹簧振子的运动过程是完全对称的。 (1)B、O、A为三个特殊状态 O为平衡位置,即速度具有最大
8、值vmax,而加速度a A为负的最大位移处,具有加速度最大值amax,而速度vB为正的最大位移处,具有加速度最大值amax,而速度v (2)其运动为变加速运动与变减速运动的交替过程,在此过程中,机械能守恒,动能和弹性势能之间相互转化 加速度a与速度v的变化 (3)任一点C的受力情况重力G与弹力N平衡;F回F弹kx,可看出回复力方向始终与位移方向相反 知识点五:简谐运动图象的应用(一)简谐运动图象的物理意义图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移时间函数图象。注意振动图象 质点的运动轨迹。(二)简谐运动图象的特点简谐运动的图象是一条正弦(余弦)曲线。(1)从平衡位置开始计时,函
9、数表达式为,图象如图1。(2)从最大位移处开始计时,函数表达式,图象如图2。(三)简谐运动图象的应用(1)振动质点在任一时刻的位移。如图中,对应t1、t2时刻的位移分别为x1=+7cm、x2=-5cm。(2)确定振动的振幅、周期和频率。图中 位移的值就是振幅,如图表示的振动振幅是10cm;振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示 。由图可知,OD、AE、BF的间隔都等于 =0.2s;频率。(3)确定各时刻质点的速度、加速度(回复力)的方向。加速度方向总与位移方向相 。只要从振动图象中认清位移的方向即可。例如在图中t1时刻质点位移x1为正,则加速度a1为负,两者方向相反;
10、t2时刻,位移x2为负,则a2便为正;判定速度的方向的方法有:位移时间图象上的斜率代表速度。某时刻的振动图象的斜率大于0,速度方向与规定的正方向 ;斜率小于0,速度的方向与规定的正方向 ;将某一时刻的位移与相邻的下一时刻的位移比较,如果位移 ,振动质点将远离平衡位置;反之将靠近平衡位置。例如图中在t1时刻,质点正远离平衡位置运动;在t3时刻,质点正向着平衡位置运动。(4)比较不同时刻质点的速度、加速度、动能、势能的大小。加速度与 的大小成正比。如图中|x1|x2|,所以|a1|a2|;而质点的位移越大,它所具有的势能越 ,动能、速度则越 。如图中,在t1时刻质点的势能EP1大于t2时刻的势能E
11、P2,而动能则Ek1Ek1,速度v1v1。小结:若某段时间内质点的振动速度指向平衡位置(可为正也可为负),则质点的速度、动能均变 ,回复力、加速度、势能均变 ,反之则相反。凡图象上与t轴距离 的点,振动质点具有相同的动能和势能。单摆 外力作用下的振动知识点一:单摆(一)单摆如图所示,一条 的细线下端拴一小球,上端固定,如果细线的质量与相比可以忽略,球的直径与的长度相比可以忽略,这样的装置叫单摆。单摆是实际摆的理想化模型。(二)在摆角较小的条件下,单摆的振动是运动证明:将摆球由平衡位置O点拉开一段距离,然后由静止释放,摆球在摆线拉力T和重力G共同作用下,沿圆弧在其平衡位置O点左右往复运动。当它摆
12、到位置P时,摆线与竖直夹角为, 将重力沿圆周切线方向和法线方向(半径方向)分解成两个分力G1与G2,其中G1=mgsin,G2=mgcosG2与T在一条直线上,它们的合力是维持摆球做圆周运动的力。它改变了摆球的运动,而不改变其速度的大小。而G1不论摆球在平衡位置O点左侧还是右侧,始终沿圆弧切线方向平衡位置O,正是在G1的作用下摆球才在平衡位置附近做往复运动,所以G1是摆球振动的力。即:F回= 。在摆角较小的条件下,在考虑了回复力F回的方向与位移x方向间的关系,回复力可表示为:F回=。对一个确定的单摆来说,m、都是确定值,所以为常数,即满足F回=kx。所以在摆角较小的条件下,使摆球振动的回复力跟
13、位移大小成,而方向与位移的方向,故单摆的振动是简谐运动。(三)几种常见的单摆模型ROa知识点二:探究单摆的周期与摆长的关系(一)探究思路探究影响单摆周期的因素可以从单摆的装置入手,单摆的装置包括细绳和小球。因此影响单摆周期的因素可能有:细绳的长度、小球的质量、摆角等。在这里只探究单摆的周期与摆长的关系。(二)操作技巧(1)实验所用的单摆应符合理论要求,即摆线要 且弹性要 ,摆球用密度和质量较 的小球,以减小空气阻力影响,并且要在摆角较 的情况下进行实验。(2)要使单摆在竖直平面内振动,不能使其形成 摆或摆球转动,方法是摆球拉到一定位置后由 释放。(3)单摆的上端不要卷在夹子上,而要用夹子加紧,
14、以免单摆摆动时摆线滑动或者摆长改变。(4)测量摆长时,不能漏掉摆球的 。(5)测单摆周期时,应从摆球通过 位置开始计时,在数到“零”的同时按下秒表开始计时计数。计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。要测量30次到50次全振动的时间,然后取 值计算出一次全振动的时间,即为单摆的振动周期。(三)数据的处理先通过数据分析,对周期和摆长的定量关系做出猜测,例如可能是、,或者 、然后按照猜测来确定纵坐标轴和横坐标轴。例如,我们通过简单的估算,认为很可能是,那么可以用纵坐标表示T,横坐标表示,作出图象。如果这样作出的图象确实是一条直线,说明的确有的关系
15、,否则再做其他尝试。(四)实验结论单摆的周期与摆长的平方根成正比。知识点三:单摆的周期(一)单摆的周期公式实验证明单摆的周期与振幅A关,与质量m关,随摆长的增大而增大,随重力加速度g的增大而减小。荷兰物理学家惠更斯总结出单摆周期公式: (二)单摆的等时性在小振幅摆动时,单摆的振动周期与无关的性质称为单摆的等时性利用单摆振动周期与振幅无关的等时性,可制成计时仪器,如摆钟等。由单摆周期公式知道,调节即可调节钟表的快慢。(三)等效摆长与等效重力加速度在有些振动系统中不一定是绳长,g也不一定为9.8m/s2,因此出现了等效摆长和等效重力加速度的问题。(1)等效摆长如图所示,三根等长的绳共同系住一密度均
16、匀的小球m,球直径为d。与天花板的夹角。若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在处,故等效摆长 ,周期 ;若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O处,故等效摆长为 ,周期 。(2)等效重力加速度公式中的g由单摆所在的空间位置决定。由知,g随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的 代入公式,即g不一定等于9.8 m/s2。g还由单摆系统的运动状态决定。单摆处在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值 。若单摆若在轨道上运行的航天飞机内,摆球完全失重,回
17、复力为零,则等效值 ,所以周期为无穷大,即单摆不摆动了。当单摆有水平加速度a时(如加速运动的车厢内),等效重力加速 ,平衡位置已经改变。g还由单摆所处的物理环境决定。如带电小球做成的单摆在竖直方向的匀强电场中,回复力应是 力和 力的合力在圆弧切线方向的分力,所以也有等效值的问题。知识点四:用单摆测当地的重力加速度 (一)实验目的利用单摆测定当地的重力加速度(二)实验器材铁架台(带铁夹)一个,中心有孔的金属小球一个,长约1m的细线一条,毫米刻度尺一根,游标卡尺(选用),秒表一块(三)实验原理单摆在偏角很小时的振动是简谐运动,振动周期跟偏角的大小和摆球的质量无关,这时单摆的周期公式是,变换这个公式
18、可得 。因此只要测出单摆的和 ,即可求出当地的重力加速度g的值。(四)实验步骤(1)在细线的一端打一个比小球上的孔径稍大些的结,将细线穿过球上的小孔,制成一个单摆。(2)将铁夹固定在铁架台的上端,铁架台放在实验桌边,使铁夹伸到桌面以外,把做好的单摆固定在铁夹上,使摆线自由下垂。(3)测量单摆的摆长:用游标卡尺测出摆球直径2r,再用米尺测出从悬点至小球上端的悬线长,则摆长 。(4)把单摆从平衡位置拉开一个小角度,使单摆在竖直平面内摆动,用秒表测量单摆完成全振动30至50次所用的时间t,求出完成一次所用的平均时间,这就是单摆的周期T。(5)重复上述步骤,将每次对应的摆长、周期T填于表中,按公式 算
19、出每次g值,然后求出结果。摆长(m)振动次数n(s)N次历时t(s)周期T(s)(m/s2)g(m/s2)平均值(m/s2)123(五)注意事项(1)选择材料时摆线应选择 而不易 的线,长度一般不应短于1m;小球应选用密度较 的金属球,直径应较 ,最好不超过2cm;(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象;(3)摆动时控制摆线偏离竖直方向不超过10;(4)摆动时,要使之保持在同一个运动平面内,不要形成 摆;(5)计算单摆的振动次数时,应在摆球通过 位置时开始计时,以后摆球从同一方向通过最低位置时进行读数,且在数“零”的同时按下秒表,开始
20、计时计数;(6)由公式可以得出k= ,因此对数据的处理可采用图象的方法。如图所示,作出的图象,图象应是一条通过原点的直线,求出图线的 ,即可求得g值。这样可以减小误差。知识点五:受迫振动和振动的能量(一)阻尼振动与无阻尼振动振幅逐渐减小的振动叫阻尼振动;振幅不变的振动为等幅振动,也叫无阻尼振动。(二)振动系统的能量(1)对于给定的振动系统,振动的动能由振动的 决定,振动的势能由振动的 决定,振动的能量就是振动系统在某个状态下的动能与势能之和。(2)对于同一振动系统,它的机械能大小由大小决定,振幅越大,机械能就越。若无能量损失,简谐运动过程中机械能守恒,为等幅振动。(三)受迫振动振动系统在 力作
21、用下的振动叫受迫振动。受迫振动稳定时,系统振动的频率等于的频率,跟系统的固有频率 关。受迫振动不是系统内部动能和势能的转化,而是与外界时刻进行着能量交换,系统的机械能也时刻变化。(四)共振在受迫振动中,当驱动力的频率振动系统的固有频率时,振动物体的振幅最,这种现象叫做共振。声音的共振现象叫做共鸣。共振曲线如图所示:在需要利用共振时,应使驱动力的频率接近或振动物体的固有频率;在需要防止共振时,应使驱动力的频率与振动物体的固有频率不同,而且相差越 越好。机械波的产生和传播知识点一:波的形成和传播(一)介质能够传播振动的媒介物叫做介质。(如:绳、弹簧、水、空气、地壳等)(二)机械波机械振动在介质中的
22、传播形成机械波。(三)形成机械波的条件(1)要有;(2)要有能传播振动的。注意:有机械波 有机械振动,而有机械振动 能产生机械波。(四)机械波的传播特征(1)机械波传播的仅仅是这种运动形式,介质本身并不随波 。沿波的传播方向上各质点的振动都受它前一个质点的带动而做振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是这种运动形式在介质中依次向外传播的过程。对简谐波而言各质点振动的振幅和周期都,各质点仅在各自的 位置附近振动,并随波动过程的发生而沿波传播方向发生迁移。(2)波是传递能量的一种运动形式。波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也
23、是能量由近及远的传播过程。因此机械波也是传播的一种形式。(五)波的分类波按照质点方向和波的方向的关系,可分为:(1)横波:质点的振动方向与波的传播方向的波,其波形为相间的波。凸起的最高处叫,凹下的最底处叫。(2)纵波:质点的振动方向与波的传播方向的波,其波形为相间的波。质点分布最密的地方叫作,质点分布最疏的地方叫作。知识点二:描述机械波的物理量知识(一)波长()两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。在横波中,两个 的波峰(或波谷)间的距离等于波长。在纵波中,两个 的密部(或疏部)间的距离等于波长。振动在一个 内在介质中传播的距离等于一个波长。(二)频率(f)波的频率
24、由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。(三)波速(v)振动在介质中传播的速度,指单位时间内振动向外传播的距离,即。波速的大小由 的性质决定。一列波在不同介质中传播其波速不同。对机械波来说,空气中的波速小于液体中的波速,小于固体中的波速。(四)波速与波长和频率的关系 注意:一列波的波长是受和制约的,即一列波在不同介质中传播时,波长不同。知识点三:机械波的图象(一)机械波的图象波的传播也可用图象直观地表达出来。在平面直角坐标系中,用横坐标表示介质中各质点的位置;用纵坐标表示某一时刻,各质点偏
25、离位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,(二)物理意义表示各质点在某一时刻离开 位置的情况。(三)简谐波(简谐振动在介质中传播形成的波)的图象是正弦(或余弦)曲线。如图:(四)波的图象应用(由图象可获取的信息)(1)振动质点的振幅A、波长。如:一列简谐横波某一时刻的波形图如图所示:从图上可知振幅为cm,波长为cm。若已知波速v16cm/s,由可求周期T= 。(2)这一时刻各质点的平衡位置、位移,回复力、加速度等。如图中b点的平衡位置在cm处,此时偏离平衡位置的位移为cm,回复力和加速度均为 向最大。(3)在波速方向已知时,可确定各质点在该时刻的振动方向 (反之也可以)质点带
26、动法离波源 处质点带动处质点振动,即远处质点总是重复近处质点的振动状态。所以判断某质点的振动方向,可看其附近 波源一侧的点与该点的位置关系,若比该点位置低,则向 振动;若比该点位置高,则向 振动。如上图若已知波向右传播,a点应在它前面的质点之后振动,在y-x图的-x方向再添一点,则波形图在下方,所以a应向振动;b跟a,b的位移要变小,经回到平衡位置,所以b向运动;c跟b,c的位移要变大,经到达最大位移处,所以c向运动;依此类推,d向 运动,e向 运动。(4)经过一段时间t后的波形图平移法先计算出经t时间波传播的距离x ,因为波动图象的重复性,若知波长,则波形平移n时波形不变,当x=n+x时,可
27、采取去整n留零x的方法,只需把波形沿波的 方向平移 即可,然后按照正弦规律补全新波形。(5)波的图象与振动图象的区别与联系振动图象波动图象图象形状正(余)弦曲线正(余)弦曲线研究对象个质点个质点物理意义图线表示个作简谐振动的质点在 时刻的位移大小和方向图线表示某时刻形成波的个质点的位移的大小和方向横坐标质点振动经历的波传播方向上介质上各质点的位置纵坐标一个质点的位移各质点的位移相邻两个位移最大值之间的距离一个利用可知振动频率一个若知波速可求周期、频率:判断质点在某一时刻振动方向的方法看下一 ,沿振动方向垂直横坐标找前一 确定质点下时刻振动到哪时间变化对图象的影响振动图象随时间的延长而继续延伸,
28、原来的部分 波形图象随时间的延长而沿着x轴向传播方向平移,由于前面各质点的位置都要变化,因此原来的图象也相应会 ,形成新的波形图象机械波的现象知识点一:惠更斯原理知识点二:波的反射(一)波的反射波遇到障碍物会返回来继续传播的现象叫波的反射。入射波的波线与平面法线的夹角i叫做 角;反射波的波线与平面法线的夹角i叫做 角。如图所示:(二)波的反射规律(1)入射线、法线、反射线在同一平面内,入射线与反射线分居 两侧,反射角 入射角,即i i。(2)反射波的波长、频率、波速都跟入射波的 。(三)用惠更斯原理解释波的反射(四)波遇到两种介质界面时,总存在反射。(五)常见的声波反射现象(1)声波一切发声的
29、物体都在振动,它们就是声源。声源振动的时候,在空气中形成声波。声波在空气中是 波。声波可以在气体、液体、固体中传播,在固体中传播的速度最 ,且声波从一种介质到另一介质, 保持不变。(2)回声对着山崖或高墙说话,声波传到山崖或高墙时,声能的一部分被吸收,而另一部分声能要反射回来,这种反射回来的声叫“回声”。回声是声波的反射现象。原声和回声相差 s以上,人耳才能区分原声和回声。如果声速已知,当测得声音从发出到反射回来的时间间隔,就能计算出反射面到声源之间的距离。利用这个道理,已设计成水声测位仪,用以测量海水的深度、探测鱼群,或用地面上爆炸声波的反射用以探测地下的油矿等。(3)夏日的雷声轰鸣不绝,原
30、因是声波在云层界面多次 。(4)在空房间里讲话感觉声音更响原因是:声波在普通房间里遇到墙壁、地面、天花板发生 时,由于距离近,原声与回声几乎同时到达人耳,人耳只能分开相差0.1s以上的声音。所以人在房间里讲话感觉声音比在野外大,而普通房间里的幔帐、地毯、衣物等会吸收声波,会影响室内的声响效果。知识点三:波的折射(一)波的折射波从一种介质射入另一种介质时,传播的方向会改变,这种现象叫波的折射。入射波的波线与与两介质界面法线的夹角叫做入射角i;折射波的波线与两介质界面法线的夹角叫做折射角r。如图所示:(二)波的折射规律(1)入射波的波线与折射波的波线及界面法线在同一平面内,入射线与折射线分居 两侧
31、。(2)在波的折射中,波的 不改变,折射波频率 入射波频率。折射波的波速、波长均发生改变。波发生折射的原因:是波在不同介质中的 不同。(3)入射角i、折射角r和波速之间有下述关系:入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比,即: 。当v1v2 时,i r, 折射角折向法线;当v1v浅水区。(三)用惠更斯原理解释波的折射定律(四)波遇到两种介质界面时,总存在折射。知识点四:波的衍射(一)衍射现象波绕过障碍物到障碍物后面继续传播的现象,叫做波的衍射。(二)发生明显衍射现象的条件障碍物或孔的尺寸比波长 ,或者跟波长 。(三)惠更斯原理对波的衍射的解释波传到小
32、孔(或障碍物)时,小孔(或障碍物)仿佛一个新的波源,由它发出与原来同频率的波(称为子波)在孔后传播,于是,就出现了偏离直线传播的衍射现象。(四)衍射是波 的现象,一切波都能发生衍射只不过有些现象不明显,我们不容易观察到。说明:当孔的尺寸远小于波长时,尽管衍射现象十分明显,但由于衍射波的能量很弱,衍射现象不容易观察到。知识点五:波的干涉(一)波的独立传播原理和叠加原理(1)波的独立传播原理几列波相遇时,能够 各自的运动状态继续传播而并不相互干扰,这是波的一个基本性质。(2)波的叠加原理:两列波相遇时,该处介质的质点将同时参与两列波引起的振动,此时质点的位移等于两列波分别引起的位移的 ,这就是波的
33、叠加原理。(二)波的干涉(1)波的干涉现象频率相同的两列波叠加,使某些区域的振动加强,使某些区域的振动减弱,并且振动加强和振动减弱的区域相互 ,这种现象叫做波的干涉。(2)产生稳定的干涉现象的条件:两列波的频率相等。干涉条件的严格说法是:同一种类的两列波, (或波长)相同、相差恒定,在同一平面内振动。高中阶段我们不讨论相和相差,且限于讨论一维振动的情况,所以只强调“频率相同”这一条件。(3)一切波都能发生干涉,干涉是波的 现象之一。(三)对振动加强点和减弱点的解释(1)振动加强点设波源S1、S2在a点分别引起的振幅为A1、A2,以图中a点波峰与波峰相遇时计时,波源S1、S2分别引起质点a振动的
34、图象如图甲、乙所示,当两列波重叠时,质点a同时参与两个振动,合振动图象如图丙所示:从波源S1、S2发出的两列波传到振动加强的点a是同相(即振动步调一致)的,引起a点的振动方向是 的,振幅是A 。振动加强是指该处质点的振幅增大,或者说相干的两列波在该处分别引起的位移总是 ,故质点的总位移等于两个分位移 ,从而振动加强。(2)振动的减弱点以波源S1、S2分别将波峰、波谷传到b点时开始计时,波源S1、S2分别引起质点b振动的图象如图甲、乙所示,当两列波重叠时,质点b同时参与两个振动,合振动图象如图丙所示:从波源S1、S2发出的两列波传到振动减弱的点b是反相(即振动步调相反)的,引起b点的振动方向 ,
35、振幅为A 。振动减弱是指该处质点的振幅减小,或者说相干的两列波在该处分别引起的位移总是 ,故质点的总位移等于两个分位移之 ,从而振动减弱。(四)振动加强区和减弱区到两波源的距离关系振动完全相同的两列波,某点到两波源间的距离之差为半波长的 倍(波长的整数倍),则是振动加强区;某点到两波源间的距离之差为半波长的 倍,则是振动减弱区。说明:(1)任何两列波相遇时都可以叠加,显然,若两波的频率(或波长)不同,在某一时刻峰、峰(或谷、谷)相遇振动加强的点,在另一时刻,不会始终加强,也就不会出现稳定的干涉图样,只是一般的波的叠加现象,而波的干涉是指波叠加中的一个特例。两列波要发生干涉必须具备一定的条件(两
36、列波的频率(波长)必须相同),通常把符合干涉条纹的两列波的波源叫相干波源。相干波源形成的图样叫干涉图样,是稳定的。稳定干涉中,振动加强区域或振动减弱区域的空间位置是不变的,并且振动加强的区域和振动减弱的区域相互隔开。(2)振动加强区域的质点,其振幅最大,等于两列波的振幅之和;振动减弱区域的质点,其振幅最小(可能为零),等于两列波的振幅之差,其值保持不变。加强区域内各点的振动位移 都比减弱区内各点的振动位移大。振动加强点的振幅最 ,但并不是说它的位移总是最 ,振动加强的质点也要通过平衡位置,此时它的位移为零,也是一个由0到A的变化过程。知识点六:多普勒效应(一)波源的频率与观察者接收到的频率(1
37、)声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源 的完全波的个数。而观察者听到的声音的音调,是由观察者接收到的频率,即单位时间内 到的完全波的个数决定的。(2)波源和观察者相对介质都不动时,观察者接收到的频率 波源的频率。(3)声波与观察者有相对运动时,若波源的频率没有发生变化,观察者接收到的频率却发生了变化。波源相对介质不动,而观察者向着波源运动:在单位时间内观察者向着波源移动一段距离,与观察者不动的情况比较,观察者单位时间内接收到的完全波的个数 ,即接收到的频率 ;同理,如果观察者远离波源,观察者单位时间内接收到的完全波的个
38、数 ,即接收到的频率 。观察者相对介质不动,而波源运动:波源接近观察者时,观察者接收到的频率 ;波源远离观察者时,接收到的频率 。(二)多普勒效应由于观察者与波源之间存在相对运动,使观察者感受到的波的频率与波的实际频率 的现象,叫做多普勒效应。如果二者相互接近,观察者接收到的完全波的个数增多,频率 ;如果二者远离,观察者接收到的完全波的个数减少,频率 。说明:(1)发生多普勒效应时波源的频率 发生变化,而是观察者 到的频率发生了变化。(2)多普勒效应是所接收到的波的频率与波源 不同的现象,并不是接收到的波的强度发生变化的现象,要正确理解频率和强度这两个描写波的不同物理量。(3)多普勒效应的产生
39、不是取决于波源距观察者多远,而是取决于波源相对于观察者运动速度的大小和方向。(三)多普勒效应是所有波动过程共有的特征。根据声波的多普勒效应可以测定车辆行驶的速度;根据光波的多普勒效应可以判断遥远天体相对地球的运行速度等。知识点七:超声波和次声波(一)超声波和次声波人耳能够听到的声波振动频率范围大约在20Hz20000Hz之间,低于20Hz的声波人耳就不能感受到,称为 波;高于20000Hz的声波,人耳也不能感受到,称为 波。(二)超声波特点(1)波由于振动频率较 ,波长较短,对于一般障碍物来说,衍射现象很不明显,基本上是沿 传播的,具有良好的直线定向传播性。(2)波频率 ,能量大而集中,具有很
40、强的穿透性。(三)超声波应用超声定位:超声波的波长非常短,能够沿直线传播和反射,因而可以定向发射,根据这种特性,可以制成声呐、鱼群探测仪等仪器,确定潜艇、鱼群的位置或海底深度。超声处理:高频的超声波具有强大的功率,一般说,超声功率与其频率的平方成正比,它在液体中传播时,会产生较大的液压冲击,根据这一个特性可以利用超声波来清洗、加工和消毒。超声检测:超声波的穿透能力很强,超声波在界面处就会发生反射和透射。利用它的穿透能力和反射波,可以制成超声波探伤仪,用来对金属、水库堤坝等进行探伤。“超声波B型显示切面成像方法”检查人体的内部器官、组织等有无病变。超声波的多普勒效应可以测量体内血流速度,超声波还可用来进行按摩、治疗、消毒、灭菌等。