The General Situation of AT89C51 Singlechip单片机中英文翻译.doc

上传人:文库蛋蛋多 文档编号:3932354 上传时间:2023-03-28 格式:DOC 页数:25 大小:178KB
返回 下载 相关 举报
The General Situation of AT89C51 Singlechip单片机中英文翻译.doc_第1页
第1页 / 共25页
The General Situation of AT89C51 Singlechip单片机中英文翻译.doc_第2页
第2页 / 共25页
The General Situation of AT89C51 Singlechip单片机中英文翻译.doc_第3页
第3页 / 共25页
The General Situation of AT89C51 Singlechip单片机中英文翻译.doc_第4页
第4页 / 共25页
The General Situation of AT89C51 Singlechip单片机中英文翻译.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《The General Situation of AT89C51 Singlechip单片机中英文翻译.doc》由会员分享,可在线阅读,更多相关《The General Situation of AT89C51 Singlechip单片机中英文翻译.doc(25页珍藏版)》请在三一办公上搜索。

1、The General Situation of AT89C51Chapter 1 The application of AT89C51Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of

2、 these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools e

3、nvironment for the validation of these microcontrollers both at the component and at the system level. Intel Plaform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of thisenvironment was not

4、 only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes

5、 (AT89C51). The paper describes the design and mechanism of this test environment, its interactions with various hardware/software environmental components, and how to use AT89C51.1.1 IntroductionThe 8-bit AT89C51 CHMOS microcontrollers are designed to handle high-speedcalculations and fast input/ou

6、tput operations. MCS 51 microcontrollers are typically used for high-speed event control systems. Commercial applications include modems,motor-control systems, printers, photocopiers, air conditioner control systems, disk drives,and medical instruments. The automotive industry use MCS 51 microcontro

7、llers in engine-control systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced on-chip peripheral functions set, such as automotive power-train control, vehicle dynamic suspen

8、sion, antilock braking, and stability control applications. Because of these critical applications, the market requires a reliable cost-effective controller with a low interrupt latency response, ability to service the high number of time and event driven integrated peripherals needed in real time a

9、pplications, and a CPU with above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission criticalapplications such as an autopilot or anti-lock braking system, mistakes are fina

10、nciallyprohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the same core and/or peripheral design flaw. In addition, field replacements of components is extremely expensive, as the devices are typically sealed in

11、modules with a total value several times that of the component. To mitigate these problems, it is essential that comprehensive testing of the controllers be carried out at both the component level and system level under worst case environmental and voltage conditions.This complete and thorough valid

12、ation necessitates not only a well-defined process but also a proper environment and tools to facilitate and execute the mission successfully.Intel Chandler Platform Engineering group provides post silicon system validation (SV) of various micro-controllers and processors. The system validation proc

13、ess can be broken into three major parts.The type of the device and its application requirements determine which types of testing are performed on the device.1.2 The AT89C51 provides the following standard features: 4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bittimer/counters, a five v

14、ector two-level interrupt architecture,a full duple ser -ial port, on-chip oscillator and clock circuitry.In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing th

15、e RAM, timer/counters,serial port and interrupt sys -tem to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscil lator disabling all other chip functions until the next hardware reset.Figure 1-2-1Block Diagram1-3Pin DescriptionVCC Supply voltage.GND Ground.Port 0:Po

16、rt 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin cansink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data busduring accesses to external program

17、 and data memory. In this mode P0 has internalpullups.Port 0 also receives the code bytes during Flash programming,and outputs the codebytes during program verification. External pullups are required during programverification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pullups.T

18、he Port 1 output buffers can sink/so -urce four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also rece

19、ives the low-order address bytes during Flash programming and verification.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 outputbuffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they arepulled high by the internal pullups and can be used a

20、s inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to Port 2 pins that are externally being pulled low will source cu

21、rrent (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVXDPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses t

22、o external data memory that use 8-bit addresses (MOVX RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals durin Flash programming and verification.Port 3:Port 3 is an 8-bit bi-directional I/O port with internal

23、pullups.The Port 3 outputbuffers can sink/sou -rce four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves

24、 the functions of various special featuresof the AT89C51 as listed below:RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROG:Address Latch Enable output pulse for latching the low byte of the address duringaccesses to external memory.

25、This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency,and may be used for external timing or clocking purposes. Note, however, that one ALEpulse is skipped duri -ng each access to external DataMe

26、mory.If desired, ALE operationcan be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active onlyduring a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Settingthe ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN:Prog

27、ram Store Enable is the read strobe to external program memory. When theAT89C51 is executing code from external program memory, PSEN is activated twiceeach machine cycle, except that two PSEN activations are skipped during each access toexternal data memory.EA/VPP:External Access Enable. EA must be

28、strapped to GND in order to enable the deviceto fetch code from external program memory locations starting at 0000H up to FFFFH.Note, however, that if lock bit 1 is programmed, EA will be internally latched onreset.EA should be strapped to VCC for internal program executions. This pin alsreceives th

29、e 12-volt programming enable voltage (VPP) during Flash programming, forparts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operatingcircuit. XTAL2 :Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 a

30、re the input and output, respectively, of an inverting amplifierwhich can be configured for use as an on-chip oscillator, as shown in Figure 1. Either aquartz crystal or ceramic resonator may be used. To drive the device from an externalclock source, XTAL2 should be left unconnected while XTAL1 is d

31、riven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. Idle Mode In idle mode, the

32、 CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It sho

33、uld be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pi

34、ns is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory. Power-down ModeIn the power-down mode, the oscillator is sto

35、pped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip

36、RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.The AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-

37、chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.2 Programming AlgorithmBefore programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the follow

38、ing steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines. 3. Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array

39、or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cy

40、cle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been in

41、itiated. 2.1Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify: If lock bits LB1 and LB2 have

42、not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled. Figure 2-1-1 Programming the Flash Figure 2-2-2 Verifying

43、 the Flash2.2 Chip Erase: The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.2.3 Reading

44、 the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned areas follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032

45、H) = FFH indicates 12V programming(032H) = 05H indicates 5V programming2.4 Programming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, wil

46、l automatically time itself to completion. A microcomputer interface converts information between two forms. Outside the microcomputer the information handled by an electronic system exists as a physical signal, but within the program, it is represented numerically. The function of any interface can

47、 be broken down into a number of operations which modify the data in some way, so that the process of conversion between the external and internal forms is carried out in a number of steps. An analog-to-digital converter(ADC) is used to convert a continuously variable signal to a corresponding digit

48、al form which can take any one of a fixed number of possible binary values. If the output of the transducer does not vary continuously, no ADC is necessary. In this case the signal conditioning section must convert the incoming signal to a form which can be connected directly to the next part of the

49、 interface, the input/output section of the microcomputer itself. Output interfaces take a similar form, the obvious difference being that here the flow of information is in the opposite direction; it is passed from the program to the outside world. In this case the program may call an output subroutine which supervises the operation of the interface and performs the scaling numbers which may be needed for digital-to-analog converter(DAC). This subroutine passes information

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号