《单片机煤气报警器毕业论文07602.doc》由会员分享,可在线阅读,更多相关《单片机煤气报警器毕业论文07602.doc(40页珍藏版)》请在三一办公上搜索。
1、摘 要全国燃气行业发展迅猛,液化气、天然气、煤制气等城市燃气作为清洁能源已在工商业和城镇居民用户中得到广泛应用,特别是随着“西气东输”工程的快速进展,燃气行业发展潜力巨大。但是随着燃气的广泛应用,由于燃气泄漏所引发的爆炸、中毒和火灾事故也时有发生,这在某种程度上增加了城市的不安全和不稳定因素。为了使燃气更好地造福于民,造福于社会,减少并杜绝各种因燃气泄漏而引发的爆炸及火灾事故,各燃气使用单位及居民用户选择一种适合的室内煤气泄露报警器实为必要之举。燃气报警器的核心是气体传感器。当气体传感器遇到燃气时,传感器电阻随燃气浓度而变化,随之产生电信号,供燃气报警器后级线路处理。经过电子线路处理变成浓度成
2、比例变化的电压信号,由线性电路加以补偿,使信号线性化,经微机处理、逻辑分析,输出各种控制信号,即当燃气浓度达到报警设定值时,燃气报警器发出声光报警信号并可显示燃气浓度或启动外部联运设备。本文正是通过分析目前燃气报警器的现状,设计制作室内故障监测报警系统,保障人们的生命财产安全。关键词:气体传感器; 煤气泄漏 ;煤气报警Abstract The rapid development of the national gas industry, liquefied gas, natural gas, coal gas and other city gas as a clean energy busin
3、ess and urban residents in users has been widely used, and gas industry has great potential. But with the extensive use of gas, due to gas leak caused an explosion, poisoning and fire accidents have also occurred to some extent, increased the citys insecurity and instability. In order for gas to bet
4、ter benefit the people, the benefit of the community, to reduce and eliminate all due to gas leak caused the explosion and fire, the gas unit and residential customers use to select a suitable indoor gas leak alarm is actually necessary move. Gas sensor is the core of combustible gas. When the gas f
5、ace gas sensor, the sensor resistance change with gas concentration, the resulting electrical signal for processing of combustible gas line after the class. After dealing with electronic circuit into a voltage proportional to the concentration change signal to be compensated by the linear circuit, t
6、he signal linearization, by computer processing, logical analysis, the output of various control signals, that is, when the gas concentration alarm set value , combustible gas audible alarm signal can display gas concentration or start an external transport equipment. It is through this analysis of
7、the current status of combustible gas, indoor design fault monitoring alarm system to protect peoples lives and property.Keywords:Gas sensor; Gas Leak ; Gas Alarm目 录摘 要IAbstract.II目 录. 11 绪 论11.1 课题背景11.2 燃气报警器的概述21.3 课题研究的目的及意义21.4 系统设计任务22系统方案设计42.1 设计要求42.2 设计思路42.3 设计方案52.3.1 方案一62.3.2方案二62.3.3方
8、案的确定72.4 系统方案组成72.4.1系统三大部分82.4.2系统框图93系统模块设计103.1 气体浓度检测模块103.2主控模块103.3设置报警模块144硬件电路设计与分析154.1 系统电源的设计154.1.1 三端固定式集成稳压器154.1.2 +5V电源电路的设计164.2 信号采集放大电路的设计174.2.1气敏传感元件特性174.2.2 信号采集放大电路的设计184.3 A/D转换电路的设计194.3.1 ADC08096的介绍194.3.2 电路具体设计方法214.4 存储器电路的设计224.5 显示器电路的设计234.5.1显示模块LCD1602234.5.2 电路设计
9、方法234.6 报警器电路的设计244.7 键盘电路的设计234.7.1 键盘的工作原理224.7.2 键盘的识别方法224.7.3 键盘的工作方式224.8 串口通信电路的设计234.8.1 RS-232标准244.8.2 接口信号1245软件设计255.1 单片机编程2255.2 程序框图和主要程序246实验调试256.1 硬件调试256.2 软件调试256.3 调试结果276.4 小结. 27参考文献29结 论30致 谢30附录131附录232绪 论1.1 课题背景煤气的主要成分是CO、氢和烷烃、烯烃、芳烃等。煤气有毒是因为其中的CO、芳烃等能与人体中的血红蛋白结合,造成缺氧,使人昏迷不
10、醒甚至死亡,在低浓度下也能使人头晕、恶心及虚脱。一氧化碳(CO)为无色、无味、无臭、无刺激气体,比重0.967,几乎不溶于水,不易被活性炭吸附。当碳物质燃烧不完全时,可产生CO,如人体短时间内吸入较高浓度的CO,或浓度虽低,但吸时间较长,均可造成急性中毒。CO主要来自取暖燃料,CO对人体的损害主要表现在损害血液输送氧气的能力,CO与血红蛋白结合能力超过氧和血红蛋白的结合能力的200-300倍,当CO与血红蛋白结合形成的碳氧血红蛋白含量达到5%时,就会对人体产生慢性损害,达到60%时就会昏迷,达到90%就会死亡。由于发生一氧化碳中毒事件的普遍性和隐蔽性,迫切需要一种能够很好的监控室内一氧化碳浓度
11、的仪器,并且在一氧化碳浓度过高时能够采取相关措施防止火灾的发生,保护人们的生命财产安全。 本文正是通过分析目前燃气报警器的现状,设计制作室内故障监测报警系统,保障人们的生命财产安全。1.2 燃气报警器的概述 首先我们应对国家标准规定的燃气报警器的种类有所了解。燃气报警器可分为可燃气体检漏仪(简称“检漏仪” ),可燃气体报警控制器(简称“控制器” )、可燃气体探测器(简称“探测器” )、家用可燃气体报警器(简称“报警器” )四大系列产品。报警器为居民家庭用的燃气报警器,一般安装在厨房,遇燃气泄漏时,报警器可发出声光报警,或同时伴有数字显示,同时联动外部设备。有的报警器可自动开启排风扇,把燃气排出
12、室外。有的报警器在报警时可自动关闭燃气阀门,以防燃气继续泄漏。 燃气报警器的核心是气体传感器,俗称“电子鼻”。当气体传感器遇到燃气时,传感器电阻随燃气浓度而变化,随之产生电信号,供燃气报警器后级线路处理。经过电子线路处理变成浓度成比例变化的电压信号,由线性电路加以补偿,使信号线性化,经微机处理、逻辑分析,输出各种控制信号,即当燃气浓度达到报警设定值时,燃气报警器发出声光报警信号并可显示燃气浓度或启动外部联运设备(如排风扇、电磁阀)。1.3 课题研究的目的及意义因此设计出性能更加可靠,经济实惠的室内故障监测报警系统已成为市场的需要。目前,现有煤气检测仪器主要是面对工矿企业或公共场所的检测,价格高
13、昂,对家庭也是不适应的。因此,本次设计所面对的是广大居民。1.4 系统设计内容 本文利用单片机电路制作室内故障监测报警系统。设计过程中关键的两个部分:系统硬件的设计和控制软件的编写。这也是在设计过程中需要解决的关键的问题。(1)硬件任务单片机室内故障监测报警系统的硬件主要有3大部分,即浓度检测和显示模块、主控模块和设置报警模块。浓度检测模块主要由半导体气体传感器QM-N5组成,它是整个系统中关键的元件;显示部分由LCD1602组成。主控模块由单片机及其相关软件组成,由程序对单片机进行控制。设置报警模块主要由键盘和报警器等组成,这个模块是对报警煤气浓度进行设置和浓度过高的时候进行报警处理。硬件的
14、设计需要单片机、模电及其数电的相关知识。在解决这一问题的过程中,需要查阅大量资料,结合所学知识,向老师获取帮助。(2)软件任务它的软件设计主要包括主程序和中断处理两大部分:主程序要完成I/O口,定时器的初始化及对中断输入的设定,然后延时使传感器进入稳定工作状态,等待定时器的中断;中断处理程序根据具体情况需要有相应的子程序。要对程序进行多次调试,分块编程。对各个子程序块所解决的问题要相当明确。最后在制作完成硬件电路板后要调试出设计要求的功能。2系统方案设计2.1 设计要求设计的监测报警系统应实现如下功能:系统能巡回检测四个不同位置的烟雾和煤气浓度,把检测到的信号送单片机处理,处理过的数据送显示器
15、显示和送存储器保存,在烟雾和煤气浓度达到设置值时系统启动报警。2.2 设计思路本设计拟按以下思路展开研究:(1)根据该设计要实现的基本功能,设计大致应该分为信号采集放大,信号处理控制,系统设置报警三个部分。信号采集部分即通过气体传感器检测室内气体浓度,将这种变化量转化成电压模拟量的变化,然后通过运放进行必要的放大。信号处理部分是将采集到的模拟信号转换成数字信号,送入控制器进行处理,并将处理过的信号送存储器保存和送显示器显示。系统设置报警部分是通过预定控制方式并利用蜂鸣器报警实现系统的准确操作。(2)依据上面所说的思路,得到如下一些基本的结论:信号采集部分为了能准确采集到气体浓度的变化应选用半导
16、体气体传感器,为使其有效的检测室内气体浓度,采用电阻型半导体气体传感器;而放大部分使用运放进行比例和反相两级放大。信号处理部分为了实现精确控制,采用单片机较为合适。将模拟信号送A/D模块进行模数转换,经过处理后送存储器保存和送显示器显示。系统设置报警部分可以考虑采用44键盘设置初始值和蜂鸣器报警。根据对上面设计系统的分析,我们得到该设计思想框图如下图2-1所示:信号采集放大信号处理控制系统设置报警图2-1 设计思想框图2.3 设计方案2.3.1 方案一 采用双传感器4,采用相互补偿的方法检测房间气体浓度,将检测的到浓度信号送入A/D芯片中进行模数转换,利用AT89S51单片机控制声音报警以及将
17、气体传感器检测到的浓度值在显示器显示出来。分析:此设计方法虽然解决了传感器检测气体浓度时温度和湿度对测量值的影响,但是,在实际制作的过程中,需要利用的核心控制芯片必须最少具有4路8位A/D口,气体和温度敏感信号直接由A/D口采集后,进行一定的算法修正和软件补偿。由于本课题要求采用四路巡回检测,如果采用本方案那么就需要8个特性相同的半导体气体传感器(4个密封检测气体浓度,另外4个做补偿),为了达到更好的温度修正效果,往往需要传感器厂家的配合,在生产时对传感器进行成对生产,以保证传感器特性的一致性。并且主控制芯片采用常规的ADC0809和单片机并不支持,且制作硬件极其复杂,系统整体设计体积过大、功
18、耗高、成本太高。单单采用此种方法并不能更好的提高测量性能,还需要加以软件补偿。由于采用此方案制作硬件极其复杂,系统整体设计体积过大、功耗高、成本太高,所以不予采纳。2.3.2方案二采用高性能半导体气体传感器5,采用四路巡回检测的方法检测房间气体浓度,将检测的到浓度信号送入A/D芯片中进行模-数转换,利用AT89S51单片机控制声音报警、键盘输入、存储器运行,并且将气体传感器检测到的浓度值在LCD显示器上显示出来。分析:选用此方法设计电路不仅解决了温度、湿度的影响,并且简化了设计电路,降低了成本,采用此种方法设计主体电路。具体电路设计将在下文中给出。提出本次设计采用QM-N5型气体传感器。现在特
19、将此传感器简单介绍如下:(1) 特点:QM-N5型气体传感器6是以金属氧化物SnO2为主体材料的N型半导体气敏元件,当元件接触还原性气体时,其电导率随气体浓度的增加而迅速升高。灵敏度较高,稳定性较好,响应和恢复时间短。用它做成的报警器完全可以达到UL2034标准,不需温、湿度补偿。(2) 工作条件:工作电压:5V 0.5V静态功耗:0.5W(加热丝冷态电阻为50 2)环境条件:温度-10+50,相对湿度95%初期稳定时间:15分钟响应时间:10s检测煤气浓度范围:5020000ppm(3)对一氧化碳反应的敏感度7: 图2-2 系列一氧化碳浓度的条件下RL电压的振荡曲线高湿高温对传感器的影响:根
20、据测试结果表明,此传感器可承受96%RH相对湿度、70的环境条件,但基电平升高。2.3.4 方案的确定 现今半导体气体传感器技术的不断提高,使得在应用此类传感器时不必采用温度、湿度补偿8,极大的简化了电路和降低了成本。鉴于对以上三个方案的对比分析,方案三最符合设计要求,所以我选择使用方案三来设计本次毕业设计的主体电路。2.4 系统方案组成本设计属于单片机应用系统。它是单片机在系统检测方面的应用,是典型的嵌入式系统。通常将满足海量高速数值计算的计算机称为通用计算机系统;而把面向工控领域对象,嵌入到工控应用系统中,实现嵌入式应用的计算机称之为嵌入式计算机系统,简称嵌入式系统。嵌入式系统一般分为四种
21、:工控机,通用CPU模块,嵌入式微机处理,单片机。2.4.1系统三大部分单片机应用系统的结构分三个层次。 (1)单片机:通常指应用系统主处理机,即所选择的单片机器件。(2)单片机系统9:指按照单片机的技术要求和嵌入对象的资源要求而构成的基本系统,如时钟电路、复位电路和扩展存储器等与单片机构成了单片机系统。(3)单片机应用系统:指能满足嵌入对象要求的全部电路系统。在单片机系统的基础上加上面向对象的接口电路,如前向通道、后向通道、人机交互通道(键盘、显小器、打印机等)和串行通信口(RS232)以及应用程序等。2.4.2系统框图本系统由三大部分九个不同电路组成,系统总的结构框图如下图2-4所示:一路
22、传感器ADC0809二路传感器 单片机AT89S51三路传感器四路传感器2K存储器报警器44键盘串口通信LCD 5V电源图2-4 系统结构框图1) 信号采集部分:14路传感器电路;2) 信号处理部分:A/D转换电路,2K存储器电路,LCD显示电路,串口通信电路,单片机复位电路;3) 设置报警部分:44键盘电路,报警器电路。3系统模块设计3.1 气体浓度检测模块室内故障监测报警系统采用四路巡回检测的方法,检测器件采用QM-N5型气体传感器6检测房间气体浓度,检测结果送入模/数芯片ADC0809中进行模数转换。本设计选用了半导体气体传感器,半导体气体传感器主要使用半导体气敏材料。自从1962年半导
23、体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。3.2主控模块AT89S51引脚图如图3-1所示,下面分别介绍其引脚。(1) 主电源引脚Vss,Vcc,Vss(20脚):接地。Vcc(40脚):主电源+5V。(2)外接晶振引脚XTAL1(19脚),XTAL2(18脚)XTAL1:在单片机内部,它是一反相放大器输入端,这个放大器构成了片内振荡器。它采用外部振荡器时,此引脚应接地。XTAL2:在片内接至振荡器的反相放大器输出端和内部时钟发生器输入端。当采用外部振荡器时,则此引脚接外部振荡信号的输入。图3-1 AT89
24、S51引脚功能图(3)输入/输出引脚P0,P1,P2,P3:P0.0P0.7(3932脚):PO是一个8位漏极开路型双向I/O端口。在访问片外存储器时,它分时提供低8位地址和8位双向数据,故这些I/O线有地址线/数据线之称,简写为AD0AD7。在EPROM编程时,从P0输入指令字节,在验证程序时,则输出指令字节(验证时,要外接上拉电阻)。Pl.0P1.7(18脚):Pl是一个带内部上拉电阻的8位双向I/O端口。在EPROM编程和验证程序时,它输入低8位地址。P2.0P2.7(2128脚):P2是一个带内部上拉电阻的8位双向I/O端口。在访问片外存储器时,它输出高8位地址,即A8A15。在对EP
25、ROM编程和验证程序时,它输入高8位地址。P3.0P3.7(1017脚):P3是一个带内部上拉电阻的8位双向I/O端口。在整个系统中,这8个引脚还具有专门的第二功能。(4)控制线(4条)RST:AT89S51的复位信号输入引脚,高电位工作,当要对芯片用时,只要将此引脚电位提升到高电位,并持续两个机器周期以上的时间,AT89S51 便能完成系统复位的各项工作,使得内部特殊功能寄存器的内容均被设成已知状态。ALE/PROG:ALE 是英文ADDRESS LATCH ENABLE的缩写,表示允许地址锁存允许信号。当访问外部存储器时,ALE 信号负跳变来触发外部的8 位锁存器 (如74LS373),将
26、端口P0 的地址总线(A0-A7)锁存进入锁存器中。在非访问外部存储器期间,ALE 引脚的输出频率是系统工作频率的 1/16,因此可以用来驱动其他外围芯片的时钟输入。当问外部存储器期间,将以1/12 振荡频率输出。EA/VPP:该引脚为低电平时,则读取外部的程序代码 (存于外部EPROM 中)来执行程序。因此在8031 中,EA 引脚必须接低电位,因为其内部无程序存储器空间。如果是使用AT89S51或其它内部有程序空间的单片机时,此引脚接成高电平使程序运行时访问内部程序存储器,当程序指针PC 值超过片内程序存储器地址(如8051/8751/89C51 的PC 超过0FFFH)时,将自动转向外部
27、程序存储器继续运行。PSEN:此为Program Store Enable的缩写。访问外部程序存储器选通信号,低电平有效。在访问外部程序存储器读取指令码时,每个机器周期产生二次PSEN 信号。在执行片内程序存储器指令时,不产生PSEN 信号,在访问外部数据时,亦不产生PSEN 信号。以下是单片机的工作方式:单片机的工作方式包括:复位方式,程序执行方式,单步执行方式,掉电、节电方式以及EEPROM编程和校验方式。1)复位方式 RST引脚时复位信号的输入端。复位信号是高电平有效,高电平的持续时间应该在24个时钟周期以上,若时钟频率为6MHz,则复位信号至少应持续4us以上,才可以使单片机可靠复位。
28、复位以后,内部各寄存器进入下列状态:PC 0000HACC 00HPSW 00HSP 07HDPTR 0000HP0P3 FFHIP *000000BIE 0*000000BTMOD 00HTCON 00HTL0 00HTH0 00HTL1 00HTH1 00HSCON 00HSBUF 不定PCON 0*0000B复位后,程序计数器PC15的值是0000H说明:AT89S51单片机的程序起始位置是在内存的0000H,也就是说程序的第一条指令必须存入内存的0000H单元,程序才可能在复位后,直接运行。只要Vcc上升时间不超过1ms,通过在Vcc和RST引脚之间一个10uF电容,RST和Vss引脚
29、(即地)之间加一个10k的电阻,就可以实现自动上电复位,即打开电源就可以自动复位。也可以进行手动复位,在Vcc和RST引脚之间接一个按键,即可以实现手动复位。复位电路可以参考图3-2:图3-2 单片机复位电路2)程序执行方式 程序执行方式是单片机的基本工作方式。所执行的程序可以放在内部ROM、外部ROM或者同时放在内外ROM中。若程序全部放在外部ROM中(如对8031),则应使EA=0;否则,可令EA=1。由于复位后PC=0000H,所以程序的执行总是从地址0000H开始的。但真正的程序一般不可能从0000H开始存放,因此,需要在0000H单元开始存放一条转移指令,从而使程序跳转到真正的程序入
30、口地址。3)单步执行方式 单步执行方式是使程序的执行处在外加脉冲(通常用一个按键产生)的控制下,一条指令一条指令地执行,即按一次键,执行一条指令。序返回至少要在执行一条指令后才能重新进入中断。将外加脉冲加到INT0输入,平时为低电平。通过编程规定INT0信号是低电平有效,因此不来脉冲时总是处于响应中断的状态。在中断服务程序中要安排这样的指令:JNB P3.2;若INT0=0,不往下执行JB P3.2;若INT0=1,不往下执行RETI; 返回主程序执行一条指令4)掉电和节电方式 在掉电方式下,单片机的耗电降至最小。当电源恢复时,VPD应该保持足够长的时间(约10ms),以保证振荡器的起振和达到
31、稳定,然后重新开始正常工作。在掉电方式下,CPU暂时不工作,但也随时准备恢复工作。3.3设置报警模块此模块主要由键盘、报警器11组成(相关的电路设计下一章将会有详细的介绍)。气体浓度经过键盘设置后送单片机记录,在采集到的气体浓度过大,超过安全值时单片机驱动蜂鸣器工作,提供报警服务。4硬件电路设计与分析每一个设计都要以一定的知识为基础,知识的多少在一定程度上决定了设计出来的东西的好坏程度。这些知识包括硬件知识和软件知识。硬件知识用来设计硬件电路,以实现信号的采集、放大、转换和显示等功能。软件知识用来设计芯片处理数据的先后顺序,数据的获得途径以及对数据做怎样的处理和显示功能等等。当然,在硬件电路里
32、一些芯片是必不可少的,软件设计也需要对芯片进行编程序。本章将介绍本次设计用到的一些基本知识和主要芯片。电路的设计都在建立在理论的基础上。理论依据的成立与否在很大程度上决定了电路设计的成功,也整个系统能否实现的根本。为此,本章将着重介绍硬件电路的设计以及分析。4.1 系统电源的设计直流稳压电源主要由电源变压器、整流电路、滤波电路和稳压电路所组成,以前电子设备中的稳压器大都由分立元器件构成,现在研制成功了各种集成稳压器。下面简单介绍本设计使用到的电源器件:三端固定式集成稳压器。4.1.1 三端固定式集成稳压器三端固定式集成稳压器有78XX/79XX系列,它是固定输出电压式稳压器,片内有过流保护和过
33、热保护功能,外接两只电容就可以简单构成稳压电路,如图4-1所示。当输入电压Vi、输出电流Io或温度变化时,输出电压Vo可保持不变;另外当输出短路,可使输出电流Io现在为一定值;若集成稳压器过热,则稳压器停止工作,也避免稳压器遭到损坏。图中C1用以抑制过电压,抵消因输入线过长产生的电感效应并消除自激振荡;C2用以改善负载的瞬态响应,即瞬时增减负载电流时不致引起输出电压有较大的波动。C1,C2一般选用涤纶电容,容量为 0.1 F 或者几个 F。安装时,两电容应直接与三端集成稳压器的引脚根部相连。78XX系列为正电压输出,79XX为负电压输出,各自有100mA、500mA和1.5A三个系列。78XX
34、系列和79XX系列的管脚配置不同,在接线的时候要特别注意。如上图所示,三端稳压器的三端是输入端Vi、输出端VO和公共端COM,使用公共端通常接地。它的内部有效电路由调整管、保护电路、控制电路和误差放大器等组成,Vo-COM间电压与基准电压进行比较,工作时经常保持一致,当输入电压Vi或输出电流Io变化时,使输出Vo保持稳定。三端稳压器12为了使电路能稳定工作,在输入端和输出端分别接入电容。输入端稳定电容是当稳压器输入阻抗降低时,防止发生震荡,可采用0.11uF的陶瓷电容,在应用中一般要在输入端前加一个电解电容,即平滑电容。当平滑电容距离稳压器很近时,可以省掉陶瓷电容。输出端电容也是稳定电容,对于
35、降低输出纹波、输出噪声及负载电流变化的影响有很好的效果,采用0.11uF的陶瓷电容就可以了。4.1.2 电源电路的设计根据以上所介绍的参数,本系统所用+5V电源采用7805稳压管,将由变压器送出来的9V交流电压变成5V直流电压。本电路使用整流全桥对9V交流电压进行整流,然后经过滤波电路送入7805稳压管,从而得到稳定的+5V直流电压。电路图如图4-2所示:本电路工作时,先将插头接到220V市电上,由开关接通电源,此时,红色发光二极管工作显示电源接通状态。图4-2 系统+5V电源电路设计4.2 信号采集放大电路的设计4.2.1气敏传感元件特性(1)灵敏度特性气敏元件的灵敏度特性,是表征气敏器件对
36、检测气体敏感程度的指标.半导体气敏元件对多种可燃性气体和液体蒸汽都有敏感性能,其灵敏度视气体和液体蒸汽不同而有所不同.器件灵敏度虽各有差异,但它们都遵循共同规律,即气敏元件阻值与检测气体浓度成对数关系变化:logRc=m.logC+n (4-1) 式中n与气体检测灵敏度有关,除了随材料和气体种类不同而变化外,还会由于测量温度和添加剂的不同而发生大幅度变化。m为气体的分离度,随气体浓度变化而变化。 (2)温湿度特性半导体气敏元件敏感原理是基于敏感体表面的吸附反应,所以易受环境温度、湿度影响.由于气敏器件与环境温湿度有一定依赖关系,所以在需要较高精度和可靠性的应用中,在电路中要加入温湿度补偿.湿度
37、传感器的昂贵价格限制了湿度补偿的采用,一般仅作温度补偿即可取得较好效果。(3)加热特性半导体气敏元件需要在加热状态下工作,加热温度影响器件的性能,加热功率变化,元件电阻及灵敏度也相应的有所变化,所以传感器的工作电源应使用稳压电源。(4)初期恢复特性:气敏元件在不通电状态下存放后,再通电时并不能立即投入正常工作,其电阻值会有一段急剧变化过程,而后趋于稳定.元件由通电至趋于稳定的时间称为初期恢复时间。初期恢复时间与元件种类、存放时间和存放环境状态有关;一般不通电存放时间长,初期恢复时间亦长,但一般都在5分钟以内。由于这种影响使得气体检漏仪或报警器在通电初期即使没有检测气体,也会触发报警,即所谓通电
38、初期误动作.为此,在设计报警器电路时,可采取适当措施,设法消除这种误动作现象或避免这种影响.(5)长期工作稳定性半导体气敏元件的敏感层是用非常稳定的金属氧化物制成的,因此它具有优秀的长期稳定性,在正常使用条件下,其使用寿命可达3年以上。4.2.2 信号采集放大电路的设计根据QM-N5的性能参数以及以上所述参数,可知将信号采集放大的关键是将QM-N5的可变阻值转变为电压输出。因此本设计使用了LM358运算放大器。信号采集放大电路如下图4-4所示:图4-4 信号采集放大电路4.3 A/D转换电路的设计4.3.1 ADC0809的介绍由于AT89S51内部没有A/D转换,我们在把相应的浓度模拟信号转
39、换为能够被单片机所识别的数字信号的时候,需要用到芯片ADC0809进行模数转换,再经过单片机用软件产生进行其它输出。 (1)8路8位AD转换器,即分辨率8位。(2)具有转换起、停控制端。下图为ADC0809的内部结构原理图(图4-5):图4-5 ADC0809的内部结构图4-6 ADC0809的引脚图下面来介绍一下ADC0809的引脚功能,ADC0809的引脚图如图4-6:ADC0809的引脚功能:(1)IN0IN7:8路模拟输出端。A、B、C的状态字决定在A/D转换时用哪个模拟输入端输入。(2)ALE(22脚):地址锁存器允许信号输入端。当它为高电平时,地址信号进入地址锁存器中(3)CLOC
40、K(10脚):外部时钟输入端。时钟频率典型值为640KHZ,允许范围为10KHZ到1280KHZ。时钟频率低时,A/D转换速度也降低。(4)START(6脚):A/D转换信号输入端。有效信号为一正脉冲。在脉冲上升沿,A/D转换器内部寄存器均被清零在下降沿开始A/D转换。(5)EOC(7脚):A/D转换结束信号。在START信号上升沿之后的02us+8个时钟周期时间内,EOC变为低电平。当A/D转换结束后,EOC立即输出一个(正)阶跃信号,可用来作为A/D转换结束的查询信号或中断的请求信号。(6)OE(9脚):输出允许信号。当OE输入高电平信号时,三态输出锁存器将A/D转换结果输出。(7)D0D
41、7:数字量输出端。D0为最低有效位(LSB),D7为最高有效位(MSB)。(8)12、16脚REF(+)、REF(-):正负基准电压输入端。基准电压的中心值(VREF(+)+VREF(-)/2应接近于Vcc/2,其偏差值不应该超过 0.1 。正负基准电压的典型值分别为+5V和0V。(9)Vcc(11脚)、GND(13脚):电源电压输入端。ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变
42、为高电平,指示AD转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平 时,输出三态门打开,转换结果的数字量输出到数据总线上。4.3.2 电路具体设计方法本设计采用P2.7和WR控制芯片转换开始,使用INT0中断调用P1口传输数据,P2.7和RD控制单片机读取数据。ADDC接地,P2.5和P2.6 分别控制ADDB和ADDA选择通道IN0IN3。A/D转换电路如图4-7所示:图4-7 A/D转换电路4.4 存储器电路的设计本设计采用EEPROM存储器10。EEPROM即电可擦除可编程只读存储器,它的突出优点是在线擦除和改写.它既具有ROM的非易失性的优点,又能像RAM一样随
43、机的读写.在单片机系统中EEPROM既可以扩展为片外ROM,又可以扩展为片外RAM.调试程序中用EEPROM代替仿真RAM既能方便的修改程序,又能保存调好的程序,但是与RAM相比EEPROM写操作的速度很慢,另外它的寿命也是有限的.通过参数比较,本设计采用X2816C型号的EEPROM,它是2K8BitEEPROM。该器件采用先进的NMOS工艺制造,能以字节为单位进行擦除和改写,而不是像EPROM那样整体擦除,也不需要把芯片从系统中拨下来用编程器编程。该器件使用简单,操作方便,采用5V单电源供电,能同时支持字节写和页写等多种操作方式,读写速度快。A0A10共11根地址线正好可寻址2K的存储空间
44、。地址信号经过地址译码器译码,选中要操作的存储器单元。CE、OE、WE作为控制线,其不同的状态组合控制芯片进行不同的操作。I/O0I/O7作为8位数据线,是输入/输出数据的通道。 8D触发器74LS373的OE可直接接地选通,片选信号LE由单片机的ALE直接控制,其电源和X2816C的电源一样都接5V。存储器X2816C与单片机电路连接如下图4-8所示:图4-8 存储器X2816C与单片机电路连接图4.5 显示器电路的设计4.5.1显示模块LCD1602(1) LCD1602模块13驱动:通常不接LCD的背光,因为采用背光的话,需要的电流太大,从而会造成稳压管发热特别厉害引脚说明:RS:寄存器
45、选择输入端;RS0,如果是写状态,指向指令寄存器,如果是读,指向地址计数器 RS1,不管是写状态还是读状态,指向数据寄存器RW:为0:写状态;为1:读状态;E:使能型号输入端,读状态,高电平有效;写状态,下降沿有效注意常用的命令:0x01: 清屏 0x38:8位数据传送(0x28,4位数据传送) 0x0C:开LCD ;0x08: 关LCD 0x18:字符左移 0x04: 向左移动光标 0x06: 向右移动光标(2) 通信方式线并行通信(命令:0x38)采用8线并口通信,占微控制端的I/O口,具体程序可以见发布的程序。4.5.2 显示电路设计LCD1602的数据口与单片机通过P1口连接,使能端E、RW和RS分别跟P3.5、P3.6和P3.7连接,VO通过接一个10K的电位器来控制液晶屏幕的亮度。电路使用5V电源供电。LCD1602与单片机连接电路图如下图4-9所示:图4-9 LCD1602与单片机连接电路图4.6 报警器电路的设计 报警器在采集到的浓度信号大于系统设定值时,由P3.4口发出一个高电平信号,持续时间为无限长,直到单片机撤消高电平信号为止,其撤消信号由键盘Dele